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Abstract

This report presents the results of our review and analysis
of geologic and geophysical information submitted to
Clallam County by the Northern Tier Pipeline Company

(NTPC) as part of their proposal for construction of a
marine pipeline facility and pipeline which passes through
the county. This report addresses in detail the seismicity
of the region; estimates maximum probable and possible
design earthquakes for this region; estimates ground
acceleration in different soil types; and calculates soil
liquefaction potential for materials in the pipeline .
corridor. Particular points investigated are the effects
on the local water table; estimated scour depth at the
Dungeness River crossing; depth of anchor penetration in
sediments, and possible subsidence or liquefaction on

Ediz Hook due to pile driving operations. Two conclusions
can be drawn from the review: first, that the information
submitted by NTPC is inadequate with regards to scope and
content; and secondly that from what information is
available the Ediz Hook terminal site should be abandoned.

-



SECTION I SEISMICITY

IA. Introduction

The Port Angeles and east Clallam County area, along
the proposed pipeline corridor, is in the Puget Sound-
Vancouver Island Tectonic Province. This province is
approximately 2 degrees wide and has a north-south trend
in Washington State to about latitude 48°N, where it contin-
uses in a north-westerly direction through Vancouver Island.

The Puget Sound-Vancouver Island Province lies to the
east of, and is parallel to, the subducted Pacific plate,
(Crosson, 1972). Figures I-1 and I-2 shows the tectonic
setting as described above.

In east Clallam County there are no known surface rup-
tures associated with recorded seismicity. There are some
mapped surface faults in east Clallam County. However, there
is no history of their surface movement during any felt or
instrumentally recorded earthquake. There are some inferred
faults (Gower 1978) with previous movement which was at
least pre-Fraser (i.e., 1100-1200 years). Any post-Fraser
seismic activity appears to be warping and folding, similar
to the rest of the seismically active tectonic province
described above. It is therefore believed that past large
earthquakes have been deep enough to preclude surface
rupture, but there has been surface warping from past
large earthquakes, (Gower, 1978; Slawson, 1978).

The east Clallam County area, which is in the same
tectonic province as Puget Sound and Vancouver Island, can
be subjected to rather large earthquakes. We have had a
magnitude 7.3 shock on Vancouver Island in 1946, a magnitude
7.1 event in southern Puget Sound in 1949, and a magnitude
6.5 earthquake also in Puget Sound in 1965. Between these
two energy release volumes is a seismic gap which includes
southeast Vancouver Island and northern Puget Sound (Milne,
1966). Port Angeles and the proposed pipeline route in-
cluding the Strait of Juan de Fuca and Saratoga Passage, is
actually in this gap area and therefore can be expected to
be subjected to a large earthquake someday. See figure
I-3 for seismicity map.

Because the seismic record for the above mentioned
tectonic province is for only about 120 years, the actual
occurrence rate and occurrence pattern of the larger events
is not clear. 1In the last 120 years all the large earth-
quakes have occurred in a 20-year period--between 1946 and
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Diagramatic sketch of several phases of plate interactions
in the northeast Pacific during the past 10 m.y. showing
hypothetical relationships of Puget Sound region to larger
features. Large arrows indicate the direction of gross plate
motion relative to the American plate. Double line represents
spreading center, hatched 1line a trench zone and single line
a strike slip fault. (Crosson 1972)
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Figure I-2. As can be seen by this diagrammatic map,
the plate boundary (i.e. Explorer Plate and the Juan de
Fuca Plate) are parallel to, and an integral part of
the Vancouver Island-Puget Sound Tectonic Province.
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Figure I-3 shows the seismic gap where there has been
no earthquakes with a magnitude above 6.0. This zone
of low energy release strongly suggests that a large
earthquake can occur within this area.



1965--and were about 3 1/2 degrees between epicenters., All
of the epicenters of these large earthquakes are found along
the central axis of the province.

Several people have tried to divide the Vancouver
Island-Puget Sound Province into sub-provinces. Unfortu-
nately, there is not a long enough seismic record to
convincingly accomplish this. Another problem is that there
is no firm evidence to explain the exact mechanism that has
caused large past earthquakes in this region so as to be
able to subdivide the area on a geologic/tectonic basis.

For the above reasons the entire area must be treated as
one province until more knowledge is obtained.

DISCUSSION AND CONCLUSIONS

IB. Possible and Probable Maximum Magnitude Earthquakes

Recurrence curves have been constructed for the above
described tectonic province, figure I-4. The earthquakes
used in this recurrence study are listed in Appendix 1.
Before preceding with this report, a short discussion on
Modified Mercalli Intensity data must be made. The largest
Mercalli Intensity historically recorded for the Port
Angeles area is a VII.

Intensity data can be misleading unless there is a
large volume of data over a relatively small geographic
area, for any particular earthquake. Unfortunately we do
not have sufficient intensity data from any earthquake in
the Clallam County area to be sure that the recorded inten-
sity for a particular area is the real maximum intensity.
For a felt earthquake there is usually one or two intensity
estimates from any town or city the size of Port Angeles.
This data is usually obtained from the local U.S. Postmaster.

Since about 1930 the federal government has supported
an intensity gathering program. This data is used in
several statical studies in Washington State (Stepp 1973,
Algermissen 1975, Rasmussen 1975, Malone 1979).

Because we have limited intensity data from Clallam
County this seismic investigation will not attempt to
evaluate the largest probable or possible earthquake that
can effect the pipeline facilities from intensity data.

Statistically we could have a magnitude 7.3 earthquake



about every 500 years in the Vancouver Island-Puget Sound
Province. We have had a magnitude 7.3, 7.1 and a 6.3 in
less than three years, so the projected statistics for this
area are not a good indication as to the expected occurrence
of the larger seismic events. We must conclude that we do
not know how often we can expect a magnitude 6.5 to 7.5
event. The past seismic record leads one to believe that we
have statistically erratic and geographically concentrated
seismicity, as far as the larger events are concerned.

There is also evidence to suggest that the large events occur
along the axial portion of the province; and if this is all
true, as the past seismic history has shown us, we could
expect a large event occurring with a hypocentral distance
of 40 km from Ediz Hook and the proposed ‘pipeline route in
Clallam County.

The actual time of this large event is not predictable
due to the short historic seismic record and also because
of the unknown specific tectonic process which cause these
large earthquakes. There is a good possibility that the
next large event will occur in the seismic gap area of
past low energy release. See figure I-3.

Because of the possible consequences 6f a large oil
spill from earthquake forces, a conservative approach should
be pursued in interpreting the seismic history of this area.
The loss of human life from a large seismic event is not
known; however, the ecologic and economic repercussions
from a major oil spill would be of major consequences to
the people of the entire state, and especially those of
Clallam County and other counties bordering Puget Sound.

The largest possible earthquake to take place in the
Vancouver Island-Puget Sound Province is believed to be a
magnitude 7.5 at Ediz Hook, Green Point or along the pipe-
line route. The reason for predicting this magnitude event
is because we have had earthquakes of 7.3, 7.1, 6.5 and
6.3 magnitude in this province in the last 120 years.
Algermissen has concluded that from his studies of this
area a magnitude 7.5 event can occur in the Puget Sound
region which is part of the above described province,
(Algermissen 1975). Any critical facilities built in the
Vancouver Island-Puget Sound tectonic province should be
designed to withstand this 7.5 magnitude event.

The largest probable earthquake to occur in the pro-
vince is estimated to be a magnitude 6.5 with an hypocentral
distance of 40 km from Ediz Hook, Green Point or along the
pipeline route. This 6.5 magnitude shock has a statistical
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recurrence rate of approximately 80 years; but due to the
nearness of the seismic gap and the real uncertainty of the
recurrence rate, there is good reason to believe that an
event of this magnitude will occur during the lifetime of

the oil pipeline transmission facilities. See figure I-4 for

the recurrence curve of the Vancouver Island-Puget Sound
Province.

Noncritical facilities could be constructed to main-
tain their structural integrity from this magnitude 6.5
event, as long as there would be no oil spill or loss of
life if structural failure occurred. For the actual pipe-
line loading and docking facilities and critical facilities
at the tank farm, the largest possible event must be used
for the safety of the people and for the maintenance of an

acceptable environment in western Washlngton and southern
British Columbla.

Estimated Acceleration

The thickness of the unconsolidated sediments along
the Clallam County pipeline route and at the storage facil-
ities are approximately 600 feet (Hall and Othberg, 1974).
This means that projected Bedrock accelerations may be used,
but one must be aware of possible amplification at sites
which are not Bedrock (Algermissen, 1976).

To develop some realistic accelerations for Green P01nt,
Ediz Hook and along the pipeline route, several acceleration
attenuation studies were reviewed. Those studies taken into
consideration inorder to arrive at a conservative estimate
of ground surface acceleration for the area of interest
include Espinosa, 1980; Baore et al., 1980; Algermissen,
1976; Trifunac, 1976; Schnabel and Seed, 1973; Seed et al., -
1976; and strong motion records from past earthquakes in
the Puget Sound-Vancouver Island Province.

Predictions of accelerations from earthquakes at a site
in Clallam County, Straits of Juan de Fuca and Saratoga
Passage, with a hypocentral distance of 40-60 km will be
considered to have a hypocentral distance of 40 km and a
epicentral distance of zero. This was done because a large
earthquake could take place at any location along the pipe-
line route or its related facilities; also, because of the
limited amount of data available from strong motion
accelerations in western Washington. Another reason is
that most of the published acceleration data is from
California, where earthquakes are shallow (5-20 km) and
attenuation is greater than from the deeper events in
western Washington having the same epicentral distance.
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Figure I- 4 reflects a statistical recurrence curve.

This is an average recurrence rate and doesn't
reflect the past seismic history because the

seismic record is for only 120 years and because
of the seismic -gap. '



Based on the past record of acceleration data from
this province and a review of the accepted published
literature it is estimated that a magnitude 6.5 event at
a 40 km hypocentral distance directly below a facility
will generate horizontal accelerations in consolidate soils
of 0.25 g. A magnitude 7.5 earthquake with a similar
depth, epicentral distance and surface material will have
an acceleration of 0.35 g. It is also believed that until
careful dynamic testing is completed there will be at least
a 100% amplification at Ediz Hook and all B type soil
locations. (B type soils as defined by Shannon and
Wilson, 1978)

Another approach to seismic ground motion, which gives
relationships between acceleration, velocity and displace-
ment has been done by (Boore 1978) His findings are
shown in Appendix 2.

Below is 'a table of maximum ground motion for earth-
guakes in the magnitude range expected in the Vancouver
Island-Puget Sound Province.

From Boore's findings:

Magnitude 7.1-7.6 earthquakes at 60 km distance

** Predicted Acceleration Velocity Displacement

Interval in g's cm/sec ' cm
95% . 0.55 * *
70% 0.25 24 12

*For velocity and displacement there are only six data
points and therefore only the 70% predicted interval is
shown.

**Predicted Interval is that 1nterval containing a certain
percent of the data points (i.e., 70% interval has 70% of
the data points in that interval).

In any design phase it must be recognized that while
accelerations appear to be similar for both soil and
Bedrock, soil may be, however, higher in some cases by a
factor of 2 to 3 times the estimated rock accelerations
({Algermissen, 1976). The peak velocities and displacements
are significantly greater on soil sites than at Bedrock
sites in almost all cases (Boore, 1978).
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" Magnitude 6.0-6.4 earthquakes at 60 km distance

Predicted Acceleration Velocity Displacement

Interval in g's cm/sec . cm
95% 0.19 36 19

70% 0.11 17 8

*Velocity and displacement are for magnitude 6.4
events only.

In applying our interpretation and Algermissens
observations on the possible effect of acceleration on
unstable soils, the following accelerations are predicted.

Magnitude 7.5 event Magnitude 6.5 event
Acceleration in g's Acceleration in g's
Green Point 0.35 0.25
C type soils 0.35 0.25
B type soils 0.70 0.50
Ediz Hook 0.70 0.50
A type soils * *

*completely liquified Soil types from Shannon & Wilson

. July 1978
IC. Summary and Recommendations ( Y )

From the present seismic study of east Clallam County,
the Straits of Juan de Fuca and Saratoga Passage, the
Northern Tier Pipeline Company has done an inadequate and
less than thorough analysis of the seismicity and related
ground motion of the area.

Their findings appear to be a glossing over of the
potential problems related to the construction of a
critical facility in a seismically active area.

It is the conclusion from this present study that the
predicted accelerations of Northern Tier Pipeline Company
are less than realistic and it is strongly felt that the
accelerations predicted from this report be adopted.
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It is obvious that further dynamic analysis must be
done before any conclusion can be drawn as to the safe
construction and operation of a pipeline with its related
facilities. The potential damage possible from a large
0il spill warrants a very conservative approach to safe-
guard the people and their natural environment in Washington
State and southern British Columbia.

Ediz Hook may have serious stability problems during
strong earthquake motion and also during strong vibrational
phases of construction. It is highly recommended that a
thorough dynamic analysis of Ediz Hook be accomplished
before even preliminary plans for design of docking facil-
ities be attempted.

The Green Point storage area is rather sandy, and with
some clay units present, increased hydrostatic pressures
could cause the saturated sands to lose their cohesiveness.
The same situation exists at Port Williams and proper soil
analysis can confirm or eliminate this potential problem.

There is also evidence at the cliff at Port Williams
of a quick clay unit which could liquify under dvnamic
loading. Design should take this into account also.

It is the recommendation of this report that unless
a very thorough dynamic analysis of all the soil properties
are related to a magnitude 7.5 earthgquake, with a 40 km
hypocentral distance from the area of study, and its
appropriate accelerations, as outlined in this report, no
critical facility should be constructed.

As of the writing of this report, Northern Tier
Pipeline Company has not accomplished these studies, without
which no definite conclusions to build can be made.



SECTION II
CLALLAM COUNTY AQUIFER IN THE
VICINITY OF THE PROPOSED PIPELINE ROUTE

IIa. Introduction

The information used in the this study was from Noble
(1960) and from the U. S. Geological Survey, Tacoma Office.
The U. S. Geological Survey data is an uncorrected print-
out of all reported wells drilled in the area of interest
through the summer of 1979, (see appendix 3). Noble's
water table investigation was to the east of Siebert
Creek and along the proposed pipeline route in eastern
Clallam County.

With the additional well data from the U. S. Geological
Survey, the water table appears to be essentially the same
as interpreted by Northern Tier Pipeline Company, Hydrologi-
cal plate 27, Application for Site Certification Vol. IV,
Maps. Minor fluctuations between our interpretation of
the water table elevations and that of Northern Tier
Pipeline Company may be due to additional well data not
available to Northern Tier Pipeline Company during their
study or poor well head elevation control dsed in
Jorthern Tier Pipeline Company's and our investigation.

IIB. Discussion

Noble's water table map is essentially the map of
Northern Tier Pipeline Company, plate 27 (cited above),
except for the extreme western portion which Noble didn't
include in his study. Fiqgure II-1 shows our interpretation
of the Clallam County water table in the vicinity of the
proposed pipeline route using the U. S. Geological Survey
preliminary data. The water table data west of Green
Point was not included in this study. The reason was that
the study only included that area along Northern Tier
Pipeline Company's route in Clallam County.

At lower surface elevations in eastern Clallam County
there are areas of interbedded silts, clays and sandy
layers. Where this strata occurs, there are found perched
water tables. These perched water tables are usually not
exceptionally good water producers, and better discharge
is found by drilling to the main aquifer below.

From Noble's (1960) work and the above mentioned
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U. S. Geological Survey data, there appears to be several
zones to the Clallam County aquifer system in the area of
interest. There are two recharge source zones. One 1is

from annual rainfall in the mountains to the south of the
area brought to the area by rivers and creeks. The other

source is from irrigation canals, local flooding and
sprinkling systems.

Just how much recharge the Dungeness River contributes
to the main aquifer is not clear; however, a break in the
pipeline at the Dungeness River crossing must not occur,
due to the potential ground water contamination and
ecological considerations downstream.

There are two zones of discharge also. One is from
the main aquifer and the other is from the intermittent
and discontinous perched water tables above the main water
table. Figure II-1 shows our interpretation of the main water
table and areas of known perched water tables.

There are approximately 11 miles of pipeline in
Clallam County between Green Point and Port Williams.
There are about five miles of this pipeline area where, if
there were a pipeline failure, the main water table would
definitely be affected. These areas are at McDonald Creek
(T30N, R4W, sect. B8) along the entire pipeline section
between section nine through section 12 at T30N, R4W and
also sect. seven of T30N, R3W. Another location where oil
contamination could easily occur is at T30N, R3W, sect.
nine. At all of these locations the water table is 20
feet or less from the surface (see Figure II-2).

On all sites visited along the land portion of the
pipeline route the soil is very sandy and appears extremely
permeable. A relatively small oil leak along the pipeline
route described in the previous paragraph could cause
contamination of the water table.

IIC. Summary and Recomendations

With the data available there is no way to predict the
amount of aquifer contamination from an cil pipeline leak.
This is because the exact depth from the ground surface to
the water table varies, depending on location, the volume
and rate of a possible 0il spill is not known and the true
permeability of the soil at the spill location is not
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known. All these factors can be obtained or closely

estimated along the pipeline route, especially -in the
critical areas shown in Figure II-5, on a worst case

expectation.

To predict the extent of aquifer contamination for
a particular spill can not be estimated until the actual
ground water flow rate is established. The information
needed is presently being gathered by the U. S. Geological
Survey and Clallam County and a complete report is expected
in about two years (Personal communication with USGS).

" There maybe some permeability changes at water wells
close to pile driving due to vibration during construction
phases. It is recommended that the general public be
aware of this possibility and the construction contractor
be responsible for well restoration if wells become
unuseable.

If there were a pipeline spill at the areas shown in
Figure II-2, there could be contamination of the main aquifer.

It appears that if there were a spill at the Dungeness
River, the main aquifer would be affected also.

If a spill occurs in an area where surface recharging

of the main aquifer takes place, contamination of the main
aquifer will occur.

Because the pipeline route is directly over the
Ciallam County's -Aquifer, it is recommended that a fail-
safe system be designed to protect the people and
industry of Clallam County from any oil spill contamination.
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SECTION III DUNGENESS CROSSING

Introduction

This section presents the results of our review and
analysis of reports submitted by NTPC with regard to the
Dungeness River Crossing (see map in figure III-1). These
reports consisted of two documents from Roger Lowe
Associates; RLA Files 173-04 and 173-08. The purpose of
our report is to evaluate these documents with particular
attention paid to the estimation of the maximum potential
scour depth at the crossing location.

Discussion

The Roger Lowe reports provide a brief descripticn of
the Dungeness crossing point; estimate the maximum lateral
deviation of the river; estimate maximum flow conditions
and estimate scour depth. Personal field observation of
the area substantiates the general observations of the
Roger Lowe reports, and reveals standing water in the side
terraces, several long channel scours and bars, and strong
evidence of active channel migration within the central
channel. No entrenching of the river was apparent, thus
the river at this point appears vertically stakle over the
long term. )

Since localized scour elements are known' to exist at
several points along the Dungeness, and that the flood
data for the Dungeness River crossing indicate that
strong flow variations will occur (Roger Lowe report
173-04, and Table III-1 of this report) it is clear that
there is a significant potential for elliptical scouring
at the Dungeness crossing. Determination of a maximum
scour depth is therefore necessary for the safe burial
of the pipeline below the river. It is not clear, however,
that an appropriate value has been provided in the Roger
Lowe report 173-08. The report does not mention any
technique, methodology nor formulae for determining the
eight foot maximum scour depth that they specify. The
scouring problem is a difficult one due to the number of
variables involved, and little work apparently has been
done in this particular field (no references were cited in
the report regarding scour depth determination). It
appears that the technology does not exist for making a
quantative calculation of maximum scour depth.
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SECTION IV EDIZ HOOK-EARTHQUAKE LIQUEFACTION

Introduction

This section presents the results of calculations
made to evaluate the liquefaction potential of the soils
and sediments that are found on Ediz Hook and in the
submarine crossing between Ediz Hook and Green Point. The
design earthquake accelerations, as determined in Section
I of this report, are used in the calculations.

Discussion

During an earthquake, when the cyclic shear stresses
caused by the event's oscillatory motion exceeds a.
prescribed shear stress in certain soils, liquefaction
will occur. This phenomena occurs in the following
manner. When a saturated, low to medium dense sand is
subjected to ground shaking, the material tends to
compact and decrease in volume. This change in volume
will in turn cause an increase in pore pressure since
fluid drainage is slow relative to the rapid loading of
the volume. If this volume decrease causes a pore pressure
that is equal to or greater than the overburden pressure,
i.e., the intergranular stress becomes zero, then the soil
has no strength and will physically become a flowing mud.
The potential for liquefaction is a function of the initial
relative density of the soil, the degree of severity of
shaking, and its duration. In general, the probability
of liquefaction increases as the relative density decreases,
the shaking increases in severity and the number of cycles
(duration) increases. Grain size distribution also plays
an important role, with soils having a mean grain-size
diameter of 0.lmm (very fine sand) considered most
susceptible to liquefaction.

To assess the liquefaction potential at Ediz Hook,
and the submarine crossing to Green Point, data found in
the Shannon and Wilson reports (W-3516-00, W-3373-08) were
used to compute parameters necessary for an evaluation.
The procedure used was that of Seed and Idriss (1971),
which is generally accepted as the most reliable of
liquefaction computations.

The potential for liquefaction for a given soil type
can be defined as the ratio of the earthquake induced
stress in the soil, T, to the stress 1¢ required to
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Recommendations

The estimated maximum scour depth is not acceptable.
If subchannel burial is to be a feasible approach to the
Dungeness River crossing, the eight foot scour depth must
be adequately substantiated in some manner. If the
technology does not exist for estimating quantitatively
a maximum scour depth, then other means of crossing the
Dungeness should be examined.
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initiate liquefaction. - ATe/Tc ratio greater than one indicates
potential liquefaction of the soil. (See Table below)

Calculation of the earthquake induced stress can be

made by the following relationship

T = 0.65r amax rd

e o g
where r, is the overburden pressure at the specified depth,
amax is the maximum ground surface acceleration (defined
in Section I of this report), g is the accelerating of
gravity and rd is soil deformation coeficient determined
experimentally.

Calculation of the stress level 1¢ required to
initiate liquefaction is made using the formula

cdc) Dr
50
where Reo is the effective overburden pressure at the
specified depth, C, is a correction factor for laboratory
data, Dy is the relative density, and (cdc) is & stress
v 20a
ratio determined from dynamic triaxial soil tests.

e T Qeo Cr (Zoa

The relationship defining the variables in these two
equations are evaluated by Seed and Idress (1970) from
numerous previous studies, and are presented in figures
Iv-la, b, and c. '

Calculations were made to determine the liquefaction
potential for soil types B and C for the ground acceler-
ations of the 6.5 and 7.5 design earthquakes of section I.
Since no acceleration was determined for type A soil in
section I because of the cohesionless nature of the soil,
it is immediately assumed here that type A will liquefy
during the 7.5 design earthquake. The results of the
calculations are as follows:

Soil Type Mag EE EEQ Amax LA
A 6.5 50% . Imm - 4.5
B 7.5 60% .15 .70 3.2
B 5.5 60% .15 .50 2.1
c 7.5 75% .2 .35 1.75
C 6.5 75% .2 .25 0.85

From the results of the calculations it appears that for
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the 7.5 Richter magnitude design earthquake

types A and B soils will liguefy, but that type C generally
will not. The magnitude of the ground accelerations also
will cause slope instability and slumping along the Hook

. {see Appendix IV-1 for submarine slope stabilitv review).

A map of the Ediz Hook area is given in figure IV-2. This
map outlines the zones of high liquefaction potential as
determined by these calculations, and also includes the
location of the slump feature on Ediz Hook as determined
from the side-scan sonar records (Shannon-Wilson W-3516-00).
The presence of this slump is testimony to the slope
instability of the locale.

Conclusions

It is apparent from the liquefaction calculations
that Ediz Hook is not an appropriate location for a major
pipeline facility. Given the design earthquake, the
. liquefaction of portions of the Hooks is a certainty. The
Port Angeles submarine crossing, particularly the western
half, is unstable as a result of liquefaction in the type
A and B soils at this location.

Recommendations

An extensive drilling and soil testing program for
Ediz Hook is recommended, and dynamic field tests should
be conducted at the site. If these field data substantiate
the preceding liquefaction analysis, then construction
plans for Ediz Hook should be abandoned.
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SECTION V EDIZ HOOK-PILE-LIQUIFACTION STUDY

Introduction

This section presents the results of our study of the
particular problem of pile-driving operations acting as a
casual mechanism for soil liquifaction on Ediz Hook. This
facet of the construction phase has not been directly con-
sidered in any of the technical reports submitted for our
review. It is the objective of this section to demonstrate
that the pile-driving operations can generate enough energy to
cause soil subsidence, and that the potential for soil
liquifaction is high and should be investigated in detail.

Discussion

It is known that pile-~driving can effect significant
movements in nearby structures. The phenomena is generally
thought to be caused by the displacement of the soil and by
the high pore pressures developed in clay subsoils. This is
particularly true where a large number of long displacement
piles are driven into sand-clay foundations. Horn (1966)
describes several case histories including one where piles
driven in cohesionless soil caused settlements as large as six
inches within the pile-driving area and ground settlements as
far as 75 ft. from the site. Horn also reports a study by
Ireland (1955) which suggests that driving piles into clay can
cause structure movements for a distance approximately equal to
the length of the piles driven (figure V-1). Generally it
appears that a large amount of energy (i.e., enough to cause
settlement), is in fact transmitted into the surrourding soil
during the pile driving operation.

The second question addressed here is if pile driving
operations, when conducted on Ediz Hook, could cause a ground
acceleration of sufficient magnitude to liquify the soil that
makes up the Hook. Several elements in the driving operations
increase the potential for liquifaction. The typical hammer-
impact repetition rate is between one and two Hertz, a typical
peak frequency range of earthquakes. The impact energy of
the pile hammer (180,000 ft-Lb; data from Shannon & Wilson/
Swan Wooster report W3373-08) if modeled as a point source at
the tip of the piling, is equivalent to approximately 1/8 of
a pound of dynamite being shot at each impact (see Kramer,
et al., 1968 for energy equivalents data). The effect that
these points have upon liquifaction potential hinges upon the
dynamic response of the soils that make up Ediz Hook.
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Since no field soil vibration tests have been reported for
Ediz Hook by NTPC, the ground acceleration due to pile-hammer
action cannot at this time be accurately determined. However,
in view of the high impact energy of the pile hammer; the
frequency range of this impact rate; and in view of a
recognized pile-driving/soil settlement phenomena which has
a lateral effect equal to at least the length of the pile,
it is apparent that a substantial liquifaction risk may exist
at Ediz Hook. '

Recommendations

The risk of soil liquifaction due to pile driving can
only be evaluated by making a series of dynamic pile tests on
the Hook. These measurements should be conducted with a series
of accelerometers placed radially from the test pile in a
fashion that would enable accurate determination of ground
motion acceleration as a function of distance from the pile.
It is also clear that these’ tests must be conducted prior to
project approval, since they are, in effect, feasibility tests
that will determine the viability of large scale pile driving
efforts on Ediz Hook.
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SECTION IV ANCHOR PENETRATION

Introduction

A primary consideration in the location and deployment
of the submarine pipeline is to protect it from anchor
damage. The purpose of this section is to present the results
of our review of data concerning anchor penetration into the
sediments near the submarine crossings at Ediz Hook-Green
Point and Port Williams-Partridge Point. The anchor
penetration calculations have been presented in R. J.
Brown reports 2129-2 and 2154.1.

Discussion

The resistance a soil has to anchor penetration can
be calculated in a variety of ways, each with varying
degrees of accuracy. The R. J. Brown reports, however, do
not explain their method for calculation of penetration depth;
consequently no critique of method can be made.

The results of their computations, unfortunately,
do not correspond to all the soil types in the pipeline
corridor. Their value of 3.7 feet penetration for a ten
ton anchor in locse sand is clearly not a reasonable value
for the Ediz Hook-Green Point crossing, since vibracore
data in the Shannon and Wilson report W-3516-00 reveal
penetration times of less than 10 sec/ft to an average
depth of 14.5 feet, based on 32 vibracore stations. Sediments
with penetration times of less than 10 sec/ft can be
considered very weak in shear. Applying the same approach
to the vibracore data for Port Williams to Partridge Point,
with 55 valid vibracore tests, the average depth to 10 sec/ft
'strength' material is 11.6 feet (vibracore data from
Shannon-Wilson report W-3496-06). These average depths to
constant (low) strength point out the somewhat misleading
‘safe' penetration depth of 3.7 feet. Furthermore they do
not consider the penetration depth of the 30 ton anchors
that would be carried by the 300,000 dwt tankers. Appendix
A of R. J. Brown report no. 2154.1 predicted a 19 foot
penetration of only a 15 ton anchor in 'mud'; why was the
computation not presented for a 30 ton anchor?

Analysis of the line drawings of seismic profiles of
the submarine crossings (Shannon and Wilson report W-3496-06)
reveal significant variations in the latteral extent and
thickness of the sediments that make up the top sediment
layers. With this variability comes the question of which
soil horizon to use as a reference depth for pipeline burial.
Type A soils, with vibracore penetration times that sometimes
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approach zero (See Shannon-Wilson reports W-3516-00,
W-3496-06), clearly will offer little resistance to anchor
penetration. Type B soils, where they exists, appear to
have variable strength properties. Type C soils are
relatively dense and stiff, but their position relative to
the mudline (water-sediment interface) ranges from right
at the mudline to 20 feet or more below it. It is obvious
that burying the pipeline a certain footage below a given
soil horizon will not provide a consistant layer of
protective material above the pipeline.

Recommendations

A better estimate for anchor penetration is needed
from NTPC. This should include not only a description of
methodology, but a series of calculations for all soil
types found along the route, for all the typical anchor
sizes, including 30 ton anchors.

Since Type A soils provide virtually no protection
from anchor penetration, and since Type B soils appear to
have variable strengths, it is recommended that a fixed
soil type horizon not be used for burial depth reference.
It is recommended that the burial depth be defined as four
feet below the computed penetration depth of a 30-ton
anchor, at any position along the route. This provides
a maximum continuous protection for the pipeline and
avoids the problems of depth-referencing to a particular
soil type.
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SECTION VII PORT WILLIAMS TO PARTRIDGE POINT
SUBMARINE CROSSING

Introduction

This section presents the results of a review of the
data and reports submitted by NTPC that are pertinent to
the submarine crossing from Port Williams to Partridge
Point. Topics found in these reports that that will be
considered in this section are sediment liquefaction
potential and geophysical surveying. Anchor penetration
has been discussed in section VI of this report.

Discussion

The purpose of the Shannon and Wilson report no. W-
3496-06 was to obtain geologic, geophysical and geotechnical
data of the bottom and sub bottom sea floor in order to
evaluate the engineering problems of the proposed sub-
marine pipeline crossing. The data set consists of
continuous sets of geophysical profiles (magnetics,
bathymetry, side scan sonar, high resolution seismic and
deep-penetration seismic), a sequence of vibracore samples,
and a series of laboratory tests on these samples.

The geophysical profiles mentioned in the report have
been combined and interpreted by Shannon-Wilson, and it
is only the interpretations that are presented in their
report.

The seismic source used was a "boomer type" (see

- Appendix VIII-1 for an explanation of different seismic
sources), with deep penetration capability. The other
seismic source used was a high frequency pinger source
(again see Appendix VIII-1l), which has the capability of
detecting relatively small faults and structures. Thus
with a double capability of high resolution near-surface
measurements and good resolution deep-penetration measure-
ments, it is difficult to understand why no traces of
any fault, fault block or scarp were found in this area.
Reproduction of composites of the seismic data is by far
the best means of transmitting the data, since inter-
pretation of the seismic records tend to be rather
subjective. The fact that not a single fault has been
mapped on the interpreted records is somewhat suprising
in a tectonically active region. The tectonic map of
Gower (1978) infers two regional fault systems passing
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North by Northwest on the east and west of Protection
Island, but no evidence of them are found in the interpreted
records.

The geophysical public interpretation summaries
(figures nine and 10 of the Shannon-Wilson report) can be
used to infer the average minimum depth of penetration of
a large anchor (see section VI) and a minimum thickness
of liquefiable material. The depth to vibracore T value
of 10 sec/ft is plotted on these summary charts. A T
value less than 10 means that the sediment is very soft
or loose, with low strength and low relative densities
(less than 65%). Many of the vibracore stations showed
T values of T=0 for depths as great as 20 feet. The
average depth to T=10, however, was about 11 feet for the
North and South profiles.

Ligquefaction calculations were made using the 7.5
design earthquake of section I and the estimated
acceleration for sediment type C, which is 0.46 g. The
technique used was that of Seed and Idress, 1970, and is
outlined in section IV of this report. Using a relative
density of 60% for the sediments above the T=10 depth and
the average depth of 11 feet, the calculations show, given
the design earthquake acceleration, that this entire
layer is subject to liquefaction. Generally, for types A and
B sediments, liquefaction could occur to depths of 30 feet
or more for a 7.5 event.

Conclusions

The information provided in the Shannon and Wilson
report is not adequate to make an evaluation of the
tectionic structure of the proposed pipeline route. The
interpreted geophysical profiles cannot he used to
evaluate faulting along the route. The vibracore data
do however, provide an adequate preliminary sampling
along the corridor, and provide a reasonable basis to
evaluate near surface liquefaction potential. Liquefaction
to the T=10 depth for the design earthquake will occur.

Recommendations

Further geophysical exploration of the route is
required. All geophysical profiles (not interpreted
profiles) should be released to the profile for review.

Liquefaction to the T=10 sec/ft depth requires burial
of the pipeline below this depth.
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2 25 1918 231370,0 ~120,500 44,500 0.0 0,00 0,00 0,00 0,00 6,90 S

6 21 1918  64700,0 ~121,706 46,500 0.0 0,00 0,00 0,00 4,30 4,30 S
12 _ 6 1913 Bason,n =123,000 49,300 0.0 0,00 0,00 0,00 0,00 0,00 .S
10 10 1919 10720,0 =124,300 48,3990 0,0 0,00 0,00 5,50 S,50 §5,50° 0
1 24 1920 @ 79990.0_ _~122.700._49. cﬂn__ih‘n__n‘an_n‘n s.00.0.00 a.70.. . 7
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OTHER ML

DATE GMT LONG=LAT DEPTH M8 MS MAG  INTY
10 7 1920 «20090,0 =120,0A7 47,533 0,0 0,00 0,00 0,00 0,00 0,00 S
___2_12_1_2}__1_}ﬂﬂn4j___422 700 69,000 =1k, 0,00 0,07 9,30 4,33 o, 39 S
1926 221836,0 =124¢,000 49,000 0., 0,90 0,00 0,00 5,50 S,50 0
9 17 1924 zeiﬂlgLa___1>“ ang 49,000 0,0 0,00 0,090 9,50 0,79 S.5¢ 0
12 4 1926 135500,0 =123,500 48,500 =16,0 0,00 0,00 9,00 4,32 4,30 S
12_30 1926 17S790,0 =12Q,070 47,000 0.9 0.%0 9,00 N, 00 0,00 4,00 [-]
1 3 1927 4SR00,N =120,h58 687,593 0,0 04,00 0,00 0,00 0,00 0,20 - S
S R 1927 166990,0 =120,000 49,1390 OJQ_,Q‘*Q_QJA___ 020 5,50.%8,30 %
S 18 1927 215652,0 =124,000 49,000 0,9 0,00 0,00 S,00 0,00 5,00 0
—2_2 31928 12521¢0.0 -12141an__£1.=Qg___olg__nAﬁg_a;JQ.:.nn.};ig_l.in____:_
4 18 1931 4e070,0 =122.2%7 4R,TSQ ej4,0 0,0C 0,90 0,20 4,30 4,30 . S
=12 34 193Y _152529,0_ ~12%,300 47.539 <1e,9_ 9,00 0.00 0.90 9,00 7,00 &
1 5 1932 231300, =121,300 43,000 0,0 0,00 0,90 4,00 4,30 4,39 5
.__1_15_1_5’ 60320,0 =121,8a0 48,900 0,0 0,90 0,07 4 4
1932 2216%0,0 =122,300 47,700 6.0 ©@,00 0,0" 0,00 5,00 5,00 &
a 1 1932 67010,0 =121,800 48,000 0,0 0,00 0,00 0,00 9,900 0,00 S
S S {934 40600,0 =123,000 48,000 0,0 0,00 0,00 0,00 4,30 4,30 S
9 18 1934 8nQ0J0,.9 123,700 47,609 9.,n__0,00 0,00 4,30 8,390 0,30 S
9 26 1934 1S20,0 120,540 446,998 0,0 0,00 0,00 9,20 0,00 0,00 S
10 19 1934 233100,.0 =120,540 44,998 0,0 0,190 0,00 A,00 0,00 a,00 S
11 1 1934 1S280N0,0 =120,540 44,998 0,0 0,20 0,90 0,00 0,00 0,00 S
11 2 1934 2317G0,0 =120.,540 8k, 99F8 0,0 _0,00 0,00 0,00 0,00 o0,n0 5
11 3 1934 145Q00,9 =123,000 48,010 0,0 0,00 0,00 0,00 4,09 4,00 S
7 9 $935 p2u500,09 =i20,f0n 47,790 9,0 0,00 0,00 4,30 0,00 4,30 5
10 {2 1933 10300,0 =120,223 67,6562 0.9 0,70 0,00 €,00 0,00 0,00 5
__.L__§_1°39 131100,9  =122,400 47,500 0,n_ 0,90 0,09 6,30 4,30 4,3¢ '}
19 193”A $41000,0 =123,117 09,267 0,0 0.90 0,00 9,00 0,00 0,00 b
11 13 1939 714554, =123,000 47,200 =16,0 0,70 0,00 5,75 5,70 8,75 7
10 27 1940 222918,0 «123,400 47,290 =16,0 0,90 0,0M 4,60 4,60 4, 50 S
1. 3) 1942 60907, 0 =124, 00n 51,000 0,0 0,00 0,00 5,60 S,50 §,50 0
2 23 1942 154300.0 =120,290 47,400 0,0 0,00 0,00 0,00 9,00 0,00 S
1@ 14 1942 123090 =120,652 48,310 0.0 0,00 0,00 0,00 0,00 0,00 S
24 1943 1048, 0 «l?20,600 47,300 0.0 0,00 0,00 4,30 4,30 4,390 6
L____J54i__LSQiiQL___JjJJ“IS 87,522 0,0 0, 0Q_QJ9"_*;£Q_QJHLJL______§_
11 29 1943 143C0,0 =122,90G6 48,u00 0,0 0,00 0,00 &,00 5,00 S,00 6’
3 31 1944 201500,0 123,000 47,099 0.7 0,80 0,00 4,30 4,30 4 30 ]
10 31 $944d  123490,0 ~120,600 47,800 0,0 0,00 0,09 0.30 0.30 4,30 0
12 7 1941 44890,0 =123,8790 Ub,977 0,0 0,00 0,01 H,00 0,00 0,00 h
1 4 1945 23448,7 120,223 47,682 0.0 0,00 0,00 9,00 0,00 0,90 S ..
1 23 1943 S9bIRA,L =122,377 4B 2472 0,0 0,00 0,00 0,00 0,00 0,10 &
4 29 1945 201617,0 =121,700 47,400 =-16,0 0,00 0,00 5,50 §,50 &,50C 7
8 30 1945 84600,0 =121,700 47,499 0,0 0,00 0,00 S.400 S,00 5,170 ]
S 1 1945 204670,0 =121,700 87,490 0,0 0,70 0,00 4,30 4,306 au,2¢ 0,
& 15 1945 222421,0 =123,000 42,000 0,0 0,00 0,00 4,20 4,29 4,20 0
11 12 1945  S9560,0 <122,500 48,000 0,0 0,00 0,00 5,00 0,00 0,00 &
_Z_IS 1_9“6_. S}?ltL ol =122_.504 A7 .590 mle .0 0_08 000 E'_‘I< 0. 00 . 7% by N
2 15 1948 121715.0 =122,268 04,870 0,0 0,20 0,00 9,00 0,920 0,00 [}
-2 2 18 2,390 47 0435 4.9 N _ag 0060 o 40 0. 040 a 30 Y
3 20 1946 . 42790,0 =122,000 47,502 0,0 N,90 0,00 6,00 0,00 n,00 S
A J';_V_tc.'u-. L. Y a

172212 .0 =128 360 49,9010 15,0

ii-

2.30 7 _3p 72.12
7/



LONG=L AT

DATE GMT DERPTH M8 M§ OTHER M| MG INT
7 S 194da 24116,N =124,900 49,900 0,0 €,00 0,00 4,50 4,50 4,92 0
1121947 94000,0 . =121 810 U7 S37 0,0 000 0,000 00000 0,00 S
4 2 1947 S830,0 =122,9N00 47,400 0,0 0,00 0,00 5,00 0,00 0,00 S
—9 30 1947 (034000 {22 400 d47.206 0.0 0,00 0 60.06,00 0,00 0,90 5
1 13 1943 655n00,0 «420,300 47,900 0.0 0,060 0,00 0,00 0,00 0,00 5
A _ 3 1943 12n900.0 121 . 810 42,532 0.0 06,940 0,04 0,00 0,00 0,00 s
9 24 1943 143500,0 =122,600 47,800 0,0 0,00 0,0n" n,00 4,30 4,30 0
9 74 1944 223800,0 122,523 47.88S 0.0 0,00 000 0 _006 0,00 0,00 b
4 13 1949 195543,0 =122.500 47,250 «1{6,0 0,00 0,00 7,00 7,10 7,10 8
b 1 1949 B2l1S,.0 124,500 42,500 0,0 0,00 0,00 4,00 4,00 2,30 9
‘4 14 1950 111346,0 123,000 48,000 e{6,0 0,00 0,00 4,50 4,50 4,50 (]
12 3 1989 1S7C0. N =122 30 47,947 0,0 0,00 0,00 A 0G0 0,00 0,00 L]
1 T 1951 134500,0 «120,000 47,700 0,0 0,00 0,00 0,00 0,00 0,00 5
2. 22 1952 93931 .2 -123,100 48,600 0,0 0,00 0,00 3,90 3,00 3,00 s
8 6 1952 {73inAn,0 =122,400 47,500 0,0 0,00°0,00 0,00 0,00 0,00 S
3 1o 1954 1S59499,.0 =123 ,800 47,100 =1p6,0 0,00 0,90 4,30 4,30 4,%0 S
S § 1954 14229,0 =122,416 47,316 =16,0 0,00 0,00 0,00 0,00 0,00 5
S 1S 1954 13021d,0 122,500 47 400 =1u,0 0,00 0,00 n 10 0,00 4,10 [
S 23 (954 134142,0 =120,137 48,342 0,0 0,00 0,00 0,00 0,00 0,00 S
1 1 9SS 102008,0 124,016 47,814 ~16,0 0,00 0,00 3,10 3,10 3,10 S
3 26 1955 65550,0 =122,033 48,050 ={6,0 0,00 0,00 3,70 3,70 3,70 6
9 {1 19SS S24S.0 «124,4600 4R 4 n no_ 0,00 3,00 3,00 8
11 3 1938 14023,0 =121,750 48,100 «16,0 0,00 0,00 0,00 2,00 2,06 S
1 7 198« 42925 . 0 =22, .41k UT T1Hh =-1h,0 0,00 0,0C N 0oN 0,00 0 00 S
1 26 1956 11616,0 =~122,430 43,330 0,0 0,00 0,007 5,00 5,00 S,00 o
291954 §212.0 122,650 43,350 -14,0 0,00 0,00 %,10 3,19 3,10 S
1 25 1957 11606,0 =122,433 .48,333 26,0 0,00 0,00 3,50 3,50 3,50 [
2 11 1957 170858,k =123,733 47,533 30,0__€,00 0,00 4,00 4,00 4,00 6
S 4 1957 219925,0 «122,333 47,350 =i6,0 0,00 0,00 0,00 3,40 3,40 S
11 1 19572 101200, 2 =12t,.2°0 U&,900 0,0 9,00 0,00 2,70 0,00 4,70 5_
4 12 1958 223711,0 ~120,000 48,000 16,0 0,00 0,00 0,00 4,10 4,40 b
.22 1958 201371,.0 121,400 48,020 0.0 0,00 Q.00 4,20 4,208 4,20 0
8 23 1958 50000,0 e122,912 48,692 0,0 0,00 0,00 0,00 0,00 0,00 S
0 7 31953 S07S2,.0 124,033 d6,716 wip,0 0,00 0,00 n, 00 3,30 3,30 &
8 & 1959 3u435,0 w120,000 47,817 =16,0 0,00 0,00 4,48 4,40 4,40 [
19 14 1959 213%%0,.0 «$2),9k7 47,RS0 =1&,0 0,00 4,00 F,90 3,90 3,90 S
11 23 1959 181525,0 =~121,750 456,667 =16,0 0,09 0,00 4,80 4,80 4,50 5’
12 12 1919 24 -i?2 45,733 =14 0 [ Q0 &g,.50 S
1 7 1960 91600,0 =122,670 45,750 0,0 0,00 0,00 4,90 3,60 4,90 6:'
_4 11 1940  RGI3S,0 «122.250 47,547 -i6,0 0,00 0,00 %,30 3,30 3,30 ___ 6
9 10 1960 159634,0 =}123,150 47,790 «i{6,0 0,00 0,00 0,00 4,90 4,90 ]
1.4 {964 T2401,0 122,033 46,000 33,9 0,19 0,00 n,00 0,00 9,90 9
2 2 19s1 55019,4 «121,500 47,000 40,0 0,00 0,00 3,10 3,10 3,10 S
9 146 1961 32484, =122,020 Udg,.070 8,0 0,90 0,00 p,00 6,30 4,30 7
9 17 1961 $155558,% 122,000 44,009 3.0 0,00 0,00 N, 00 0,00 0,0 ]
1Q 331 19561 33429,3 =120,07°Q 4R,4n9 Q0,0 0,09 0,00 N,00 4,00 0,00 S
1 1S 1962 S2713.,0 =120,217 47,833 «18,0 0,06 0,99 0,60 0,00 N30 [
B 11 1952 14653I00,0_ -123,500 45,000 0,0 0,00 4,00 A A0 9,00 A 00 4

-
e
-

40
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DATE GHT LONG=LAT DEPTH MB  MS OTHER ML  MAG

INT

12 3§ 1952 204v3s,8 ~122,000 47,120 2,08 0,00 0,30 0,00 5,00 5.9 &

§_24d 1963 214311,8 ~122,100 47,400 17,0 0,00 0,00 9.00 S.00 S,90 [-)

{ 26 1964 211043,2 =122,40Q 44,010 33,0 0,00 0.00 0,00 0,00 0,00 S
b8 3 - kL

7 30 1964 §24515,4 =122,300 49,200 33,0 0,00 0, oo 1,30 3,60 4,30 S

___l_jﬂ_iﬁbQ__153315+1_,_122.iQﬂ___l‘1QQ__1}4ﬂ_~ﬁ;ﬂﬂ_ﬂ4ﬂ*_ﬂ4ﬂﬂ_ﬂ4
10 14.19%¢ 63300,7" e122,100 47,700 6,0 0,00 0,00 0,00 4,30 4,30
10 315 1964  103237,5 =322,.i00 07.700 2}.0 U.IQ 0,00 4,10 0.00 e,1n

4 29 19635 152%314,0 ~122,300 47,404 0,0 6,50 0,00 ¢£,88 6,50 6,38
—10 23 1945 162759,3 =122,400 47,500 0.0 4,R9 0,00 4,80 0,00 4,30

3 7 19e7 3S5108,0 «122,700 47,700 4,20 0,90 4,20 4,10 4,20

0,0
S_25 1947 _232233.0 =122,300 48,7010 0,0 4,30 0,00 4,39 4,10 4,30
6 19 194¢ S5i43,0 =122,570 47,200 ~16,0 4,00 0,00 4,70 0,00 4,70
9 _ 6 31968  121632.7 -122.3“&4,UZL1QQ 38,0 _3,70 0,00 4,30 3,90 4,20

11 1 1963 102459,0 <124,159 50,968 33,0 4,50 0.0 0,00 0,00 4,50
—11 30 {968 104003, A 122,400 46,500 13,0 4,30 0,00 4,30 0.00 4,30

2 14 1949 83337,5 «123,085 48,7t8 52,0 4,30 0,09 4,50 0,00 4,50

__1j____12h2._Llﬁliila__:JALA_iﬁ___&JJﬁé._ié4&___;AQ_QJQQ__AAQ__LQQ_QJAQ_______
i {969 1514424,3 «121,350 47,916 5.0 4,10 0,00 4,10 0,00 4,10
11 1n 1949 73840.8 =121.400 8B.516 33.0 0,00 0,00 4.70 0,00 a.7¢
2 10 1970 202111.8 =122.370 47,700 33,0 0,00 0,09 3,90 3,90 3,90
548 1970 52954,0 =122.700 48,600 11,9 6,00 0,00 8,00 4,00 4,00

10 24 1970 223207,9 =~122,373 47,334 15,5 0,00 0,00 0,00 4,20 4,20
11 23 {971 21214,5 =121,1%2 48,259 7.4 0,00 0,00 0,00 4,{4 4,16

12 2% 1974 750N0,3 =122,214 47,572 22,5 0,00 Q.09 0,00 4,38 4,33
11 9 1972 4191R,4 =123,3%4 48,44 S1.9 0,00 0,00 0,00 4,312 4,12

o o ojlntolo oo o omv.no-u\oamknc—:oooommmmwmomaoommmo

4 20 1974 37010,5 ~121.611 46,813 2.2 0,00 0,00 0,00 4,65 u,865
5 14 197¢ 13n04%s6,4 322,974 48,304 S2.6 IR0 0,00 0,00 4,17 4,57
12 1S 1974 17582%6,1 =122,038 48,504 1,2 0,00 0,00 3,10 2,82 3,13
3 31 1978 S483R,0 =125,600 49,4399 33,0 S,30 4,00 A, 00 S,4Q S,.40
4 10 1975 10S5723,5 =120.973 46,839 1.7 0,00 0,00 0,00 4,01 4,01
4 16 1979 199929,2 122,908 47,557 43 .8 0,030 0,00 0,00 4,01 4,91
a 23 1975 17400,4 =120,821 44,823 44,8 4,00 0,00 0,00 4,12 4,12
714 1875 650%4,6 =122,407 47,334 b4 9,00 0,00 0,00 3,45 2,349
7 24 1975 114211,3 <122.,493 47,321 ° 6,0 0,00 0,00 0,00 3,40 3,40
11 30 1975 104321 .0 123,520 49,.2%9 10,0 4,79 3,50 0,00 4 90 4 99
5 14 197s §3513,8 =123,441 49,849 7,4 0,00 0,00 0,00 5,10 5,10
9 2 1975 133%11,0 =122,77k6 48,179 23,6 0,00 0,0Nn 0,00 4,71 0,71
9 8 197 82101,6 =123,939 47,376 49,6 4,50 3,90 4,80 5,02 S.,02
1] 17 197~ 237434,0 ~125.797 49,532 10,0 4,20 0,00 06,00 0,00 4,20
6 17 1977 61692,1 122,715 47,759 19,8 0,00 0,00 0,00 4,00 4,00
T 13 1977 71596,2 120,952 U7,047 Q0,1 0,00 8,00 A,_00 3,83} 3 _R3
10 15 1977 42407,2 '=123,795 42,243 49,3 0,00 0,00 0,00 5,22 5,22
3 5 1978 {R1334,9 423,078 48,041 3.0 0,00 0,099 0,00 4,09 4,09
©3 11 1978 155312,5 ~122,928 47,483 40,6 0,00 0,06 0,00 4,98 4,93
—3 40,0 0,MQ 0,00 0,00 4,38 4, d4u

31 1978 80395,5 =122.451 47,357
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APPENDIX I-2

Data from Boore (1978) used
to show acceleration, velocity and
displacement of certain magnitude earthquakes.

X 18 a rock site

] ] is a soil site -
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APPENDIX II-1

U. S. Geological Survey computer
printout of water well data used in
this report. This is all preliminary

data and is subject to revision.
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APPENDIX III-1

Characteristics of River Scours

by Douglas M. Johnson
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Systems of flow-aligned elliptical, arcuate and spindle-

- shaped scour hollows are a common feature of many straight
reaches of river channels devoid of meandering tendencies.
At low water they form thatched or scattered puddles partly
or fully infilled with sediment, and on some rivers at
high water echo-sounder records have revealed that the
scours are open and migrate downstream. Some scour elements
are associated with comparable-in-size megaripples and

sand waves and are spread fairly evenly along and across
the channel. Other usually much larger scours may be
crowded or scattered along a smooth bed or appear only
above some streamwise or spanwise segments of the channel,
with no relationship to the distribution of smaller bed
forms. Many elliptical scours can reach a width of eight
meters and up to 50 meters in length and are preserved in
the geologic record as trough-type cross stratification.
Coleman (1969) has described migrating ttroughs up to 100
meters wide and well over 2000 meters long from peak

flows along the Brahmaputra River.

In addition to the scouring action due to the natural

flow variations in a river, with increased civil develop-
ment along the banks of the river there will be a tendency
towards localized channelization due to level construction,
etc. Man-made control of the channel width will cause
flow velocities to increase during flood stages, thereby
increasing the potential extent of scouring action near
these locations. :

A variety of mechanisms for scour action have been
suggested. Among these perhaps the most realistic for
high flow velocities is the varticity/ model.
The model becomes effective as an erosional agent when
flow velocities approach what is known as supercritical
flow. Supercritical flow occurs when the hydrodynamic
Froude numver exceeds 1.0, where the Froude number F is
computed using the formula

F=V/ /gg_"__

where V is the mean flow velocity, D is the mean channel
depth, and g is the acceleration of gravity. When F is
greater than 1.0 supercritical flow exists. Engineers
concerned with canel design make a practice of avoiding
supercritical flow because of its great erosive power,

and, as pointed out by Koloseus (1971, p. 3-49), the higher
stagnation pressures of supercritical flow give rise to
uplift forces of such magnitude as to remove the lining

of a canal, Hence as a stream reach approaches F=1 the



scouring potential must increase substantially and thus
under certain circumstances, the Froude number could be
used as a qualatative gauge to estimate scouring potential.



Appendix IV-1

Submarine Slumping and the initiation
of Turbidity Currents

by N. R. Morgenstern
Marine Geotechnique, A. F. Richards ed.
Univ. of Illinois Press, 1967
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SUBMARINE SLUMPING AND THE INITIATION OF TURBIDITY CURRENTS

ABSTRACT

The conditions under which submarine slumping is known to have occurred are

reviewed and the agencies causing them are discussed,

Special attention is given

to varthquake effects. 1t is pointed out that slumps can result in a wide variety
of sedimentary structures and many of these structures are associated

with liquefaction.
underconsolidation due to high rates of
sediments is treated in detail.

The strength of sediments is considered, and the influence of
sedimentation on the strength of marine
The mechanics of slumping are analyzed from the

point of view of both drained and undrained failure. It is thought that some

stu-ps transform into high-density turbidity currents.

The evidence for the exis-

tence of such currents is summarized and a theory presented to show that a slump
can achieve sufficliently high velocities to transform into a turbidity current if
the pore pressures induced at failure are high enough.

INTRODUCTION

Much of the progress in under-
standing the processes involved in sub-
aerial landslides has been possible
ocnly through detailed analysis of par-
ticular caces. A minimum requirement
for carrying out such an analysis is
knowledge of the slope profile, the
shape and location of the major slip
surface, the water pressure conditions
at the time of failure, the appropriate
soil strength parameters, and the soil
densities. With these data it is pos-
sible to perform faily reliable calcu-
lations to account for the movements of
the soil mass. In the case of sub-
aqueous landslides or slumps the nec-
essary information is seldom available
and few properly documented case records
exist. It is .therefore necessary to
extrapolate from experience gained in
the study of subaerial movements. It
is also essential to study the fossil
structures of slumps preserved in the
geological vrecord in order to establish

the conditions under which slumping has
cccurred and to observe the influence
of the movements on the structure of
the sediments. Observations of stable
submarine slopes and knowledge of the
properties of the sediments composing
them can be used to bound the occur-
rence of slumps. A review of some of
the information that is available re-
garding submarine slumping suggests
that there are two problems associated
with the phenomenon that deserve par-
ticular attention. The first is whether
it is possible for slumps to occur on
gentle slopes, particularly on the open
continental shelf and slope. The sec-
ond problem is to account for the wide
variety of sedimentary structures that
have been attributed to slumping. These
range from large sheets of strata that
have been transported intact to tur-
bidites (Dzulynski and Walton, 1965).
Turbidite deposits are widespread (see
Bouma, 1962) and their origin is still
a matter of some debate. One mecharism

that has been suggested is the trans-

formation of a slump into a turbidity
current and subsequent deposition cf
the turbidite.

Most sediments involved in slunps
are likely to be normally consolidated.



However, in regions of high rates of
sedimentation such as exist in some del-
tas, there will be a lag between the
accumulation of the material and the
consolidation associated with it. This
gives rise to dn excess pore pressure
and the sediment is accordingly weaker.
This underconsolidated material is evi-
dently prone to slumping. Overconsoli~
dated sediments also exist in a marine
environment, the overconsolidation hav-
ing been induced by removal of over-
burden by erosion of sediment during

the development of submarine canyons

and channels associated with sea fans.
1t will be seen that some very steep
slopes that have been observed must be
composed of material that is either
overconsolidated or cemented. Never-
theless, the amount of exposure of over-
consolidated material (excepting in sub-
marine canyons) is probably small, and
the influence of this aspect of sediment
behavior will not be considered in any
detail.

In the following, data regarding
slope angles for both stable and un-
stable profiles are presented, and the
agencies that can induce slumping are
discussed. A further section reviews
the various sedimentary structures that
slumping can produce and shows that sed-
iments after slumping can achieve a
broad range of mobility from rigid block
motion to turbulent flow. Shear strength
properties of sediments are then dis-
cussed with special reference to the
influence of metastability and under-
consolidation. The mechanics of vari-
ous modes of failure ‘are introduced.
Finally the acceleration of a soil mass
moving down a slope is analyzed, and
some conditions that must be satisfied
for transformation into a turbidity
current are suggested.

OCCURRENCE OF SLUMPING

Slumping has been observed or has
been inferred to have occurred on a
wvide range of slope inclinations.
of the
to the
slopes

One
first papers to drav attention
possibility of slumping on

of gentle gradient was by Heim
(1908) who described the slip that
flowed into Lake Zug, Switzerland,

in 1887. The slope had an inclination
of 2.5 degrees. Unfortunately, the
reasons for the initiation of the
movement are not clear. The observa-
tions of Archanguelsky (1930) are also
often cited in this context. In study-
ing a sequence of cores from the Black
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Sea, he observed that recent sediments
were often absent from the slope leading
from the upper part of the shore terrace
to the deep basin of the sea. He did,
however, find such sediments in a state
of intense deformation and with dupli-
cate succession on the steeper lower
slopes and concluded that they had
slumped from above on inclinations of

1 to 3 degrees. Slumping on inclina-
tions of 1 degree has been suggested

by Shepard (1955) to account for the
delta-front valleys associated with the
Mississippi River. The existence of
underconsolidated material in this re-
gion suggests that this explanation is
likely. Submarine slumping of Norian
strata in New Zealand has been discussed
by Grant-Mackie and Lowry (1964) who
describe an exposure of 530 ft of high-
ly disturbed sediment. This layer lies
within a sequence of regular undisturbed
Upper Triassic strata but displays slump
balls, welded contacts, and other fea-
tures associated with submarine slumps.
By correlating sediments and fauna the
authors infer that the slope at the time
of movement may have been less than 1/2
degree. Movement occurred during a
period of tilting of 8 degrees by the
sea floor and the slope angle gquoted
must be considered to be a minimum.

It should be noted that the pos-
sibility of slumping on such gentle
slopes has been questioned by Moore
(1961) excepting areas of rapid accu-~
mulation. In particular, Moore doubts
the existence of slumping on the deep
sea floor and normal open continental
shelf. Regarding the continental slope,
he observes that the amount of slumping
will vary with the type of sediment, its
rate of accumulation and the topographic
features in the regions in which it is
being deposited. Detailed discussion
of some of Moore's conclusions will be
given in a further section. However,
it is of interest here to introduce
some aspects of submarine topography
in order to distinguish between the var-
ious gradients associated with ocean
bottom features. A detailed discussion
of submarine topography may be found in
Shepard (1963), Hill (1963), and Menard
(1984).

Moving seaward from a continent to
the ocean floor, it is in general pos-
sible to distinguish between the conti-
nental shelf, continental slope and con-
tinental rise. Though by no means uni-
form, the average slope of the continen-
tal shelf is only 0°07' and is slightly
steeper along the inner half, For the
continental slope, Shepard (1963) quotes



an average inclination of 4°17' for the
first 6000 feet of descent. Menard
(1961) states that continental slopes
are about 1 to 10 km high in the Pacific
and have gradients of 1 to 10 degrees.
However, the continental slopes are cut
by submarine canyouns. These are impor-
tant to the problem of slumping because
of the possibility of sediment accumu-
lating in their heads, and the channel-
ing effect that they provide for the
flow of the sediment. The slopes of
submarine canyons are also usually great-
er than that of the continental shelf.
The continental rise is pgenerally a
smooth feature connecting the continen-
tal slope to the abyssal plain. Heezen
and Menard (1963) quote an average gra-
dient for the continental rise of 300:1l
with some slopes as low as 700:1 and
others as steep as 50:1.% Gradients
abyssal plains range from 1000:1 to
10,000:1. Other features of interest
are the sediment fans at the mouths of
submarine canyons, which have their
origin in slump and turbidity current
deposits, and the abyssal hills which
ar¢ small undulations in the floor of
the abyssal regions. On the basis of
slope alone, it is evident that the
continental slope is much more favor-
sble for slumping than any of the other
moin regions mentiuned above. The heads
ol submarine canyons provide an extreme-
ly suitable environment for slumping be-
cause of their steeper inclination and
their netion as sediment traps.

The effects of submarine slumping
have been observed in various gecological
Strata in many locations. Among the
many examples that could be cited are
the cbscrvations of Jones (1937) on
Silurian rocks in North Wales and the
discussion by Beets (1946) on Miocene
slumping in northern Italy. Renz, Lake=-
man, and van der Meulen (1955%) provide
evidence for extensive submarine sliding
in western Venezuela during the Paleocene
and Eocene. For example, the geological
section near the town of Carora revecals
slipped masses of strongly contorted
Palcocene shales containing many Creta-
ceous blocks and slabs. The slump mate-
rial alternates with very fine-grained
Paleocene sandstones and shales which
were apparently deposited in quiet deep
wuter., The authors suggest that periods
of quiet sedimentation were interrupted
by tectonic events along the border of

of

*In accord with soil mechanics practice
a gradient quoted in this way is the ratio
of a horlzontal_zgﬂg/yenttcal distance.
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the trough. Submarine slumping on a
smaller scale has been inferred by Van
Straaten (1949) from the evidence of
contorted glacial clays in Finland,
which, he suggests, may have slid off a:
steep-sided ester, Finally Kuenen (1949)
has described structures attributed to
slumping in the Carboniferous rocks of
southern Wales and he favors the view
that these movements took place down
slopes not exceeding a few degrees.
Subagqueocus slumps on slopes inclined
at steeper angles than those mentioned
in an earlier paragraph have been dis-
cussed by Terzaghi (1956) and Koppejan,

van Wamelen, and Weinberg (1948). These
include the slope failure in clean sands
and gravel in Howe Sound, British Colum-

bia, which probably had an inclination
greater than 28 degrees, and the slides
composed of fine sand that occur along
the coast of Zeeland. Original angles

of 15 degrees are known to exist in the
latter case.

Pill (196La, 196Lb, 1966) has ob-
served in considerable detail the move-
ment of sediment in Scripps and La Jolla
submarine canyons. Slumping in fine

.micaceous sand occurred on inclinations

of epproximately 30 degrees. Sand falls
over steeper inclinations and gravity
creep were also important processes
aiding the transport of the material
down the slope.

) There are many mechanisms that can
induce slumping. The most common one
is prebably over-steepening of the slope.
This may occur due to deposition or pos-

sibly erustal tilting associated with

local tectonic movement. ELrosion due

to water currents or turbidity currents
may cause local over-steepening lead-
ing to progressive failure. Slumping

is particularly common at the head of
submarine canyons and in the vicinity

of mouths of large rivers. These are
both environments of rapid deposition,
Heezen (1956) has observed that sub-
marine cables near the mouth of the
Magdalena River break most frequently

in August and in the period of late
November to early December. The breaks
are probably due to turbidity currents
initiated by submarine slumps. Progres-
sive slumping or liquefaction are alter-
native mechanisms. These periods of
frequent slumping correspond to the
times when the river has just deposited
its greatest sediment load. Dill (196ua)
has found that the generation of gas
associated with the decomposition of
plant material that accumulates in a
canyon head can lead to significant
creep movements. Wave and storm action

is unlikely to have any direct influence



on the stability of deeply submerged
slopes. However, slides in shallow
water may be triggered by erosion or
rapid drawdown, nd the displaced sedi-
ment acting as 4 sudden load could in-
duce failure on a slope in deeper water.
Shepard {(1951) has reported the results
of Lathymetric traverses repeated for
several years at the head of the sub-
marine canyon at La Jolla, California.
There was no correlation between storms
and the observed mass movements which
occurred on slopes of 5 to 8 degrees.
An example of a slump which occcurred in
calm weather at the head of the Redondo
Canyon has been given by Shepard and
Emery (19h1).

Loading due to severe earthquakes
is widely accepted as an important agen-
cy c¢ausing slumps. Since somc of these
slumps may have transformed into turbid-
ity rurrents and have broken submarine
cables on their descent, the source areas
iave been of particular interest and
studies have been made of the topography.
From these bathymetric surveys it is
possible to approuximate the slope in-
clinations prior to failure (lleezen and
¥wing, 1952; Heezen and Ewing, 1955
Koutz, 1962; Ryan and Heezen, 1965).
Gutenberg (1939) provides evidence for a
submarine slide, caused by the Chilean
earthquake of November 11, 1922, having
occurred on a slope of about 6 degrees
at a location 100 miles from the epi-
center. A case of submarine slumping
due to an earthguake has also been

presented by Ambraseys (1960). The
Aluska earthquake of March 27, 1964,
caused many submarine slumps. The

largest reported to date occurred at
Valdez and contained an estimated volume
of 75,000,000 cu m (Coulter and Migli-
accio, 1966). An inclination of € de-
grees was typical of large areas of the
slump, vwhich was composed mainly of loose
to medium-dense gravelly sand containing
thin lenses of silt. It is of consider-
able interest to note that no slump toe
wus discovered by the post-earthquake
survey, and it therefore appears that a
turbidity current was formed and the
sediment moved out a considerable dis-
tance from shore. There is also a his-
tory in the Valdez area of numerous cable
breaks occurring during or immediately
after earthquakes.

Slope inclinations in the cases
mentioned above are presented in Table’
1, and vwhere the submarine slope fail-
ure lay within the epicentral region,

a comment is made accordingly. The
magnitude and focal depths of the shocks
are also given.

The largest recorded slump occurred
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in Sagami Wan, Japan, and was caused by
the Kwanto earthquake of 1923. The av-
erage deepening over the area of the
main slump was 100 m, and in all 7 x 10
cu m of sediment were transported from
the bay. Menard (1964) has compiled
the approximate volumes of some major
submarine slumps and these data are re-
produced in Table 2, together with the
Valdez case.

10

Stable slopes of various inclina-
tions have also been observed. Kuenen
(1950) reports that irrefutable evidence
of slumping was not found in the deep
basins of the Moluccas even though the
slopes are as steep as 10 degrees in
places and it is an area of high seis-
micity. Sea muds in thicknesses of
half a meter or more have been found on
slopes. of at least 15 degrees. Moore
(1960) has also observed recent sedi-
ments of at least one meter thickness
on slopes up to 18 degrees. Buffington
(1961) has found both Pleistocene sedi-
ments standing vertically and medium
sand to be stable at 35 degrees in
shallow water environments. During
bathyscaph descents to water depths of
about 3000 ft in the La Jolla fan
valley, nearly horizontal beds of stiff
cohesive clays alternating with cohe-
sionless silts were found exposed in
the wall of the channel, which sloped
at 40 to 45 degrees (Moore, 1965).
Lesser slopes in silty clay were also
found. It is suggested that these
steep slopes are the result of lateral
erosion by turbidity currents. Slide
action from the wall of the channel is
also a contributing factor and explains
the existence of down-slope grooves
along the wall. There is no doubt that
these sediments are overconsolidated.
However, the ease with which the silts
are disturbed suggests that diagenetic
bonding may not in this case be a
contributing factor to the strength of
the sediments. The studies made by
Emery and Terry (1956) of a submarine
slope off southern California are also
of interest here. Their echo-sounder
profiles revealed that the shelf had an
inclination of 1 degree,and the gradi-
ents of the upper portion of the slope
were generally between 9 and 18 degrees.

. The lower slope was more regular and

had an average inclination of 12 de-
grees. This average value is the same
as that for the gullies found incising
the upper slope. These gullies may be
due to slumping. The slope is under-
lain by thick sediments, and coring
with penetrations of 10 to 18 ft re-
covered samples of green mud. The
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TABLE 1.

SOME -SLUMPS CAUSED BY EARTHQUAKES

Within
) Foenl Fpicentral
Location and Date Slope Magnitude - Depth Region Reference
degrees - M km

~Grand Banks, 1929 3.5 7.2 Shallow Yes Heezen and Ewing (1952)
Orleansville, 1954 4-20 6.7 7T . No Heezen and Ewing (1955)
Strait of Messina, 1908 k 7.5 8 Yes Ryan and Heezen (1965)
Suva, 1953 3 6.75 60 Yes Houtz (1962)

Chile, 1922 6 8.3 Shallow No Gutenberg (1939)
Valdez; 1964 6 B.5S Shallow Yes Coulter and Migliaccio

‘ (1966)
Aegean Archipelago, 10 7.5 15 No Ambraseys (1960)
July 9, 1956 and

Admiralty Chart HNo.
1866 (1951), Royal
Hellenic Navy

TABLE 2.
VOLUMES OF SUBMARINE SLUMPS

Location

Volume
m3
Magdalena River Delta 3 x 10®
Mississippi River Delfa u x 107
Suva, Fiji 1.5 x 10°
Valdez, Alaska . 7.5 x 107
Folla Fjord 3 % 10
Orkdals Fjord 107

. : 10
Sagami Wan 7 % 10



grain size of the specimens seaward of
the self break decreases with depth in
an orderly way which suggests continuous
deposition. The authors provide some
cross sections with soil mechanics
classification data. Of considerable
importance are the quantitative data
that a marine sediment 5 ft below the
mud-line having a liquid limit of 55
percent, a plastic limit of 30 percent,
and 2 natural moisture content of 70
percent is presently stable on a slope
of approximately 15 degrees in an area
of considerable seismic activity.

SEDIMENTARY’STRUCTURES ASSOCIATED WITH
SLUMPING

It is beyond the scope of this
study to discuss in detail the many
sedimentary structures whose origin
has been associated with submarine
slumps and the mass movements that
ensue from them. However, it is of
interest to review briefly the wide
variety of slump structures that have
been observed, because of the informa-
tion this provides for assessing the
problem of the mobility of sediments
after movement has begun. More com-
prehensive studies have been provided
by Bouma (1962), Dott (1963), and
Dzulynski and Walton (1965).

It is possibtle to distinguish four
major divisions of increasing mobility
of moving sediment. This is not to
imply that any slump must pass through
each division, but it is simply a clas-
sification to illustrate the decreasing
disorder of initial sedimentary struc-
ture. The first stage is a coherent
slump where little mixing of sediment
has occurred and the beds have retained
their identity to a large degree. Tea-
tures associated with this type of slump
are pull-apart structures with intrusion
of sandstone dikes as described by
(1953) and intraformational folding as
described by Fairbridge (1946). The
distinguishing feature of this division
is that either the beds have not moved
very far or the composition of the sedi-
ment above the slip surface gave it suf-
ficient shearing resistance to maintain
coherence even though it was intensely
deformed. The second stage, which
Dzulynski (1963) has called an incoher-
ent slump, occurs when there has been
extensive mixing of indurated sediment
in a mass of sand, silt, or clay. Ex-
amples for this division are the slump
structures mapped in Venezuela (Renz,
Lakeman, and van der Meulen, 1955) and

Kuenen
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the features in flysch described by
Dzulynski and Slaczka (1958) where the
section contains many slump balls. The
origin of pebbly mudstones (Crowell,
1957) is also probably due to incoher-
ent slumping. The third division in
increasing mobility results in fluxotur-
bidites. Here the mixing of the sedi-
ment and its velocity are not sufficient
to develop the features characteristic
of turbidites, which are the structures
resulting from the final division, that
is,turbidity currents, Graded bedding
is an important criterion for distin-
guishing turbidites. It is possible
that some turbidite structures can be
explained by the pulsating bottom cur-
rents observed by Dill (1966).

Liquefaction plays an important
role in causing many minor features
observed in slumps, as well as decreas-
ing the overall shearing resistance of
the sediment and hence increasing its
mobility. Liquefaction occurs most
commonly in saturated loose sands and
silts which, when loaded, collapse and
transfer the load to the pore water.
Pore pressure gradients can be set up
which eliminate the shearing resistance
of the sediment, and if the seepage
velocity due to the hydraulic gradient
is high enough, solid particles can be
carried with the flow. Liquefaction is
the cause of the sandstone dikes men-
tioned in the previous paragraph and
the extensive sand volcanoes described
by Gill and Xuenen (1957). In the lat-
ter case, the field evidence has prompt-
ed the authors to note that the extru-
sion of the sediment required a consid-
erable period of time, starting in some
cases before movement had ceased and in
others after planing off of the slumped
masses.

Terzaghi (1956) argued against the
existence of slump-initiated turbidity
currents on the basis of the short du-
ration of ligquefaction. He felt that
the pore pressures would dissipate
quickly and that the slump material
would come to rest within a relatively
short distance from its original loca-
tion. However, after the Alaska Good
Friday earthquake, sandspouting occurred
for a duration of 5 to 10 minutes and
it is likely that excess pore pressures
existed within the sediment for longer
than that (Reimnitz and Marshall, 1965).
It is also common experience that sedi-
ments that have been liquefied after an
earthquake remain extremely soft for
some time. A more detailed discussion
of the influence of pore-pressure dis-
sipation on velocity of slump movements
will be given in a later section.



Terzaghi and Peck (1948) state that
~a saturated sand must have a relative
density less than 0.4 or 0.5 before it
c4n start to flow. They also observe
that the most unstable sediments have

an effective size, D g» less thamn 0.1
mm, and a uniformity coefficient,

Dgo

D
10

less than 5. 1t is of interest to
analyze the gradings of some slump and
turbidity current deposits to see if
they meet this criterion. This only
provides a necessary condition that
these materials were prone to lique-
faction. It is possikle that part of
the initial grading was deposited else-
where and the data being compared are
not representative, The eifective sizes
and uniformity coefficients are given

in Table 3 and for comparative purposes
results from sediments liquefied after
the Niipata earthquake of 1964 (Xishida,
1965) und from a fine sand which almost
lJiquefied during laboratory shear tests
(Bjerrum, Kringstad, and Kummeneije,
1861) are included.
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Each case quoted in Table 3 in-
cluding the complete graded sea bed
from the Hudson sea fan, satisfies the
criterion put forward by Terzaghi and
Peck. Although this alone by no means
establishes liquefaction as a mechanism,
at least the grading of these deposits
suggests that the source sediments may
be prone to it,

STRENGTH OF SEDIMENTS

In terms of effective stress, the
shear resistance along a plane of fail-
ure in a saturated soil is given by
‘[f=C'+(0-

u)tan ¢' (1)

where Te denotes the shear stress on

in terms

¢' denotes the apparent(
cohesion

~of ef-
¢' denotes the angle of \ gi:tlve
shearing resistance ess

o denctes the total
stress normal to the
failure plane

and u denotes the pore pres-

sure.

TABLE 3,

EFFECTIVE SIZES AND UNIFORMITY COEFFICIENTS

Effective Uniformity
Sediment Size Coefficient Reference
LR {nm) Deo
DlO
Core A180-1, Top .016 3.3 Heezen (1963)
Core A180-2,. 64 cm .016 3.8° "
Hudson Sea Fan 0-4 cm .022 Lou Kuenen {1964)
" 4-18 cm .039 3.7 "
" 18-2L cm .053 3.0 "
" 24-LB cm .053 3.4 “
" LB-72 cm .060 3.3 "
San Pedro Basin {(lower .
portion of graded layer) .062 2.6 Gorsline and Emery (1959)
Hiigata .09 2.8 Kishida (1965)
Fine Sand ) .07 2.5 Bjerrum, Kringstad, and

Kummeneje (1961)



For normally consolidated clays and
granular soils, the apparent cohesion
is zero and equation (1) becomes

T = (0 - u)tan ¢'

It is possible to distinguish be-
tween structurally stable and struc-
turally metastable soils. Metastable
soils show a very large rate of volume
decrease during drained shear and may
even display an initial yield point at
a stress less than their maximum
strength. Some stress-strain relations
for stable and metastable soils are
shown diagrammatically in Figure 1.

Quick clays and very loose sands
are examples of structurally metastable
soils which may be defined as soils
that, when brought to failure under
drained conditions, deform further
under undrained conditions.

For stable clays ¢' varies between
20 and 35 degrees. A correlation
between ¢' and plasticity index has
been given by Bjerrum and Simeons (1961).
Stable loose silts and sands typically
hdve values of ¢' between 28 and 34
degrees.

Large deformations in soils con-
taining a clay content greater than
approximately 35 per cent induce pre-
ferred orientation of the clay particles
in the shear zone and cause s reduction
‘of ¢' (Skempton, 1964). Angles of
shearing resistance as low as 10 degrees
are not uncommon in clays that have been
subject to large strains. Few data
giving strength parameters in terms of
effective stress are available for pre-
sent day marine sediments. The results
of Moore (1961, 1962) are ambiguous
because the conditions of drainage in
his tests are not adequately defined.
This is not the case for the strength
data for sediments from the experimental
Mohole (Moore, 1964). The average of
six results on the calcareous silty
clay from one borehole gives a ¢' of
28 degrees and a c¢' of about 8 psi.
There is as yet no evidence to suggest
that the effective stress strength
paramenters of stable deep-sea .deposits
will be any lower than the range com-
monly encountered on land. Indeed, the
presence of diagenetic bonding agents
in some marine enviroments can make the
sediment stronger than the usual range.

When a fully saturated soil is
sheared under undrained conditions and
the results are interpreted in terms of
total stresses, the material behaves as
though it is purely cohesive. This
holds for saturated sands as well as for
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clays (Bishop and Eldin, 1950). For a
normally consolidated clay or a sand

in the ground, the undrained shear
strength, c, is related to the stresses
under which the soil has been consoli-
dated, the effective angle of shearing
resistance, and the pore pressures at
failure by:

p sin ¢°' [K + (1 - K)Af]
e, © (3)
1+ (?Af - 1)sin ¢'

where p denotes the vertical effective
pressure,

K denotes the ratio between the
horizontal and vertical effec-
tive pressures,

and Ag is the appropriate pore pres-
sure parameter at failure
(Skempton,- 1954).

For stress cecnditions associated with

nc lateral yielding, as might be as-

sumed to exist during deposition either

horizontally or on a gentle inclination,

K may be expressed empirically by

(Bishop, 1958):

K =1 - sin ¢ (%)

Equation (3) then becomes

c sin ¢ [1 - sin ¢' + Af sin ¢ﬂ

= (5)
p 1+ (2Af - 1l)sin ¢'

For any particular fully consoli-
dated soil, the ratio

c
-
P

is a constant and indicates that the
undrained strength increases with
depth. It is know that this ratio
correlates closely with the. plasticity
index of many marine clays (Skempton,
1957), and the correlation is given in
Figure 2. Owing to sample disturbance
and improvements in testing technique
since the data were gathered, this re-
letion may be considered to be a lower
boundary to the true relation.
However, there is no reason to expect
that more refined data will produce
major changes in the relation.

Moore (1964) has shown that the
strength data from the Mohole sediments
lie appreciably above the correlation.
As he has observed, there are at least
two factors which may account for this.



His experiments were carried out under
isotropic consolidation and this will
in general result in a higher value of
the

c
u
p

ratio (Skempton and Bishop, 1954). The
actudl difference is difficult to esti-
mate because the pore pressure para-
meter, Ag, depends upon the history of
consolidation. It is likely that the
most dominant factor accounting for the
deviation from the correlation
bonate bonding. Assuming the
of FTigure 2 to hold,
of

is car-
relation
a predicted value

Cu

p
can be obtained from the plasticity
index data given by Moore. TFigure 3
shows that the ratic of the predicted
to measured values decreases with in-

crecasing carbonate content. Higher
values of

than might be expected have also been
found in short cores of shallow water
sediments from Lower Chesapeake Bay
(Harrison, Lynch, and Altschaeffl, 196u4)
and in short cores of deep-sea sedi-
ments (Richards, 1962). Fisk and Mc-
Clelland (1959), however, report that
fully consolidated sediments from the
Mississippi delta agree with the cor-
relation. Although it is premature to
generalize with regard to the undrained
strength of recent marine sediments, it
is unlikely that a fully consolidated
stable material will have an undrained
strength below the relation shown in
Figure 2.

Terzaghi (1956) drew attention to
the influence of high rates of sedi-
mentation on the development of strength
in a consolidating sediment. Excess
pore pressures can develop in a stratum-
that is undergoing an increase in height
due to deposition. These excess pore
pressures will depend upon the rate of
sedimentation, the height of the stratum,
and the coefficient of consolidation of
the material. The excess pore pressure
at any level in the stratum will reduce
the effective stress under which the
material has been consolidated and, as
.is evident from equation (3), the un-
drained strength at that level will be
reduced accordingly, .—
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Consider the stratum shown in Fig-
ure 4. When fully ‘consolidated, the
maximum effective overburden pressures,
Pns 2t some depth, 2z, is given by

(6)

where y' is the submerged density of
the soil, assumed constant with depth.
The increase of undrained strength
with depth for a fully consolidated
material may be denoted by

(73}

If during consolidation excess pore pres-
sures exist as shown diagrammatically

in Figure 4, the effective overburden
pressure, p, at any instant is

P=7Yy'2-u-=y'z(1l - 2

Y'z

(8)

where u is the excess pore pressure at
that instant. At any instant the ex-
cess pore pressure isochrome may be

approximated by a linear variation with
depth,

U = nz (9)
and equation (8) becomes
P = y'z(l - %T) (10)
Howevey,
1-;‘—,=3 (11)

where U is the average degree of con-
solidation. Therefore the undrained
strength available in an underconsoli-
dated clay should be proportional to
the average degree of consolidation,
that is, :

o v (12)

5T )s = Nvu 1

5, '% _

) Estimates of the degree of con-
solidation in a layer subject to sedi-
mentation at a constant rate can be
obtained from the solution presented by
Gibson (1958) for the problem of the
progress of consolidation in a clay
layer which increases in thickness with
time. Considering a layer growing on
an impermeable base at a constant rate,
it is of interest to calculate the de-
gree of consolidation for a range of
rates of sedimentation and coefficients
of consolidation when the layer has



grown to a height that might be typical
of a significant submarine slump. A
height ¢f 15 m has been assumed, and co-
efficients of consolidation from 1 =
10-% cm?/sec for a clay to 1 x 10-2
cm?/sec for a coarse silt have been
adopted. The degrees of consolidation
of the layer for a range of rates of
deposition frem abyssal conditions to
extreme deltaic conditions have been
computed and are given in Figure 5,
plotted against the rate of sedimenta-
tion for the range of consolidation
parameters chosen. The results reveal
that for a layer of this thickness,
underconsolidation is only significant
for silty clays and clays deposited at
deltaic rates. Since the heads of some
submarine canyons act as sediment traps,
the rate of accumulation may be suffi-
ciently high to suggest that undercon-
solidation is a factor associated with
slumping in them. It is also possible
to speculate that slumping occurred
more frequently in the Fleistocene,
during the recessicn of the glaciers,

because of higher rates of sedimentation.

This, together with turbidity current
erosion and a lowered sea level during
the Pleistocene, may be the dominant
mechanism accounting for the origin of
many submarine canyons (Kuenen, 1950;
Shepard, 1863).

Subject to some assumptions, the
relation between underconsolidation and
strength presented in equation (12) is
corroborated by the observations of Fisk
and McClelland (1959) on the deltaic
deposits on the centinental shelf off
Louisiana. The authors provide data
for three locations of similar composi-
tion, but of different degrees of con-
solidation and hence of different
strengths. The relevant information is
assembled in Table U.

Evidence of full consolidation for
the Eugene Island stratum is provided
by the fit of the

Sy

P

and plasticity index values with the
correlation in Figure 2. For purposes
of comparison the three cases are plot-
ted on Figure 2. Assuming that the 96
ft of the Eugene Island sediment were
deposited in 10,000 years gives a rate
of sedimentation of 0.29 c¢m per year.
Theoretically, infinite time is required
for full consolidation. However, if it
is assumed that consolidation is essen-
tially complete when the degree of con-
solidation is 95 percent, it is possible

-years.

lo8

to compute the coefficient of consoli-
dation for the material from the theo-
retical relation obtained by Gibson
(1958). A value of 2.7 x 10-% cm? per
sec is found, which is quite reason-
able, considering the Atterberg limits
of the material. Now, using this value,
it is possible to compute the average
degree of consolidation for the two
other locations if the rates of sedi-
mentation can be fixed. For the Grand
Isle location, a rate of sedimentation
of 3.5 cm per year has been used, based
upon the accumulation of 170 ft in 1500
In the case of the South Pass
location the base of the layer is in-
distinct, but bounds for its thickness
have been given. Calculations have been
carried out for both bounds with a time
for deposition of 450 years. The .com-
puted degrees of consolidation are given
in Table 5, together with the ratioc of
the observed

o I‘:n

value to the maximum. The relation be-’
tween degree of consolidation and avail-
able strength for this sediment is plot-
ted in Figure 6, and it is seen that the
linear relationship of equation (12)
fits the data extremely well.

Metastable sands and silts which
are prone to liquefaction are difficult
to obtain in an undisturbed state. They
are also difficult to reprcduce in the
laboratory, and therefore reliable data
concerning their behavior are accord-
ingly rare. Bjerrum, Kringstad, and
Kummeneje (1961), however, have suc-
ceeded in carrying out both drained and
undrained triaxial compression tests on
a very loose fine sand. Their observations
of the low strength mobilized are of
particular interest. Under fully drained
conditions, values of ¢' as low as 19.de-
grees were found. Under undrained condi-
tions, the very loose sand showed values
of ¢' as low as 11 degrees and a ratio of
undrained strength to effective consoli-

dation pressure as low as 0.11. The

pore pressures set up during undrained
failure were very high. Values of A of
2.7 were observed at failure and the
results of one typical test showed that
A continued to increase after failure to
approximately 9. It is evident that
both the drained and undrained strengths
of very loose sands are much lower than
those of corresponding stable materials.
The undrained strengths are .comparable

‘to the lowest values observed in nor-

mally consolidated marine clays. Further-
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TABLE 4,

DELTAIC DEPOSITS OFF LOUISIANA (FISK AND McCLELLAND, 1959)

Location State

Plasticity

Liquid Plastic Index ey Depth Age
Limit % Linit % % — rt Years
{(average) P

Eugene Island Fully consoli- 80-90 25-30 53 0.31 96 mnot less

Block 188 dated than 10,000
Grand Isle Underconsoli- 80-90 25-30 53 0.15 170 not more

Blochk 23 dated than 1500
South Pass Very undercon- 60-100 20-30 55 0.028 255-320 kso

Block 20 solidated (average) '

TABLE §.

UNDERCONSOLIDATION OF DELTAIC DEPOSITS OFF LOUISIANA

Average Degree of cy
: : i b d
Location Rate of Sedimentation Consolidation P (observed)
em/year Su (maximum)
P
Eugene Island 0.29 1.00 1.00
Block 188
Grand Isle 3.5 o.u8 o.u8
Block 23 .
South Pass 17 .11 0.09
Block 20 21.6 0.08

more, the exceedingly high pore, pres-
sures set up during undrained failure
are probably an important factor aiding
the post-failure mobility of such meta-
stable materials.

Seed and Lee (1964) have studied
the influence on the strength of a fine
silty sand of pulsating loads such as
might occur during an earthquake, and
they demonstrated that in a given mate-
rial consoclidated to a particular void
ratio, the deviator stress required to
cause failure decreases with the number
of pulses to failure. This also depends
upon the principal stress ratio during
consolidation and the manner in which
the pulsating load test 'is carried out.
Seed and Lee have found

c

U

P
values less than 0.1 for loose cohe-
sionless soils subject to pulsating
load.

Observations on the
sensitive clays, such as
of Scandinavia, may also have a bearing
on the possible in-place strength of
cohesive submarine sediments, if, due
to the formation of weak bonds, they
develop a loose structure. Bjerrum
(1961) has discussed in detail the
strength of materials with loose struc-
ture, and he cites tests on quick clay
which gave drained angles of shearing
resistance between 9 and 13 degrees.

Of particular importance here is the

strength of
the quick clays



observation that in undrained tests on
such material, failure may occur before
the trictional resistance is fully
mobilized.

MECHANICS OF SLUMPING

As Moore (1961) has indicated, con-
sideration of the equilibrium of an in-
finite slope with failure occurring on
a plane or planes paralle) to the slope
provides an adequate framework within

"which to discuss the mechanics of slump-
ing. It is possible to consider more
complicated configurations (for example,
Morgenstern and Price, 196%); however,
the available data regarding slope pro-
files, sediment strength, and initiating
mechanism are insufficient to warrant
this. The strength of any sediment de-
pends, among other things, upon the
conditions of drainage operating during
shear. It is therefore essential to
distinguish between drained and undrained
slumping. It will be seen that the slope
inclination at which slunping occurs is
strounply dependent upon whether the ini-
tiating process induces a drained or an
urilrained sluap. A third type of slump-
ing, termed collapse slumping, may also
be denoted. This type of slumping is
associated with metastable sediments,
and although it has only been studied in
a subaerial environment, the possibility
of formation of metastable sediments in
a marine environment suggests that col-
lapse slumping may be an important mech-
anism there. It will be defined and
discussed in more detail in a later
parapraph.

HNo excess pore pressures exist at
failure in a drained slump. By consid-
ering the horizontal and vertical equi-
librium of a slice shown in Figure 7,
the relation between the slope angle at
failure and the properties of the sedi-
ment may be readily shown to be

c’ 2

—— X sec¢ a

te =
na Tn

tan ¢' + {13)

where a denotes the inclination of the
slope to the horizontal

¢' denotes the angle of ' in terms
shearing resistance . of ef-

c¢' denotes the apparent s fective
cohesion ; stress

y'denotes submerged density of
the sediment

h denotes the height of sediment
participating in the slump.

It is of interest to note that a com-

parable analysis for subaerial condi-

and
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tions would involve the bulk density of
the material in the resulting form of
equation (13). Therefore a given amount
of cohesion is more effective in main-

taining stability under submarine con-

ditions, all other conditions being
the came. When the sediment is a
normally consolidated clay or an un-
cemented sand or silt, the following
well-known relation holds at failure:

tan o = tan 4°'

(1%)
Drained slumping is most commonly
caused by depositional oversteepening.
Since the ¢' for stable material s
generally greater than 20 degrees,
few features in deep water have incli-
nations as steep as this, it appears
that drained slumping of stable sedi-
ments is not a dominant mechanism. Tt
can, however, occur on the stcep slopes
of erosion channels. Steep slopes such
as those observed by Moore (1965) re-
quire the existence of some cohesion
vhose origin is either in overconsoli-
dation or cementing to account for
their stability. Terzaghi (Jjyse)
stated that steep slopes of coarse-
grained sediments are most commonly
encountered in deltas deposited by
mountain streams and cited the sand
gravel delta of Howe Sound, British
Columbia, as an example. Here slope
angles of 27 to 28 degrees are stable.
The clump which occurred here must have
originally had a slope steeper than
this, and Terzaghi suggested that
residual pore pressures after drawdown
reduced the shearing resistance suffi-
ciently to cause failure. This is not
a drained slump like those considered
above. The influence of drawdown pore
pressures may be estimated by methods
commonly used in the design of earth
dams (Bishop, 1957; Bishop and Morgen-
stern, 1960) and will not be considered
further here. Under fully drained con-
ditions the mobility of the sediment
will be small and it will come to rest
when the slope angle is slightly less
than the angle of shearing resistance.
Mobility under undrained conditions
will be considered in the section re-~

lating to the initiation of turbidity
currents.

and

and

Undrained slumps may be caused by
stresses set up during rapid deposition
or erosion. Dynamic loading due to
earthquakes will also produce undrained
failure. Slumping in underconsolidated
sediment is also best considered in

terms of the undrained strength of the
material.



The influence of an earthquake in
the analysis of undrained slumping may
be incorporated by introducing a hori-
zontal bhody force, k, as some percentage
of gravity and considering the equilib-
rium of a slice in the infinite slope,
Larthquakes will in general also pro-
duce a vertical acceleration, but thisg
is usually less than the horizontal
acceleration, and for simplicity will
be neglected here.

Considering the equilibrium of
the slice shown in Figure 8, and re-
solving forces parallel to the slope
one obtains
Cu » 1 = W' »

sin @ + k * W ¢ cos a

(15)

where Cu denotes the undrained strength

mobilized at failure

W' denotes the submerged density
of the slice and is given by
y' « b ¢ h

‘W denotes the bulk density of
the slice and is given by

L « h
1 is the length along the base
of the slice
and K

is some percentage of gravity.
After simplification, equation (15)
reduces to

o % §in 2a + k - ;4 . cos® & (l6)
Equation (16) relates, for undrained
slumping, the slope angle at which
failure takes place to the undrained
strength and density of the sediment,
the height of the slope, and the hori-
zontal earthquake acceleration, if any.
For slopes of gentle inclination

So_ =Sy (n)
and for many sediments

Y 3y (18)
Equation (16) now becomes

N = % sin 2a + 3k cos? a (19)

Values of N required to equili-
brate a range of slopes inclined from
0 to 20 degrees, and subject to hori-
zontal accelerations up to 15 percent of
gravity, have been computed and are
plotted in Figure 9. Considering first
the stability of slopes free of earth-
quake loading, if the observed range
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of N values for most normally consoli-
dated sediments (Figure 2) is taken

to apply (N<0.4), few slopes subject
to undrained loading can stand at
inclinations greater than 25 degrees.
Overconsolidated sediments and sedi-
ments with strong diagenetic bonds can,
of course, stund more steeply.
on very gentle gradients of, say, less
than 2 degrees, withoutr the aid of
earthquakes, can only occur in very
underconsolidated material. Terzaghi
(1956) and Mcore (1961) have already
drawn attention to the evidence that
the low strengths of the very undercon-
solidated Mississippi delta sediments
are consistent with slumping on slope
angles barely in excess of 1 degree.

If very loose, cohesionless sediments
have an N value of about 0.11 as found
by Bjerrum, Kringstad, and Kummeneje
(1961) it is seen that failure takes
place on slopes of about 6 degrees,

and it is of interest to note that

this is a fairly typical inclination
for the continental shelf.

Figure 9 shows that even small
earthquake-induced accelerations are
very detrimental to the stability of
a submarine slope. However, in a de-
tailed study of mass transport of
sediment in the heads of Scripps Sub-
marine Canyon, California, Chamberlain
(1964) concluded that there is insuffi-
cient rcason to believe that a relation-
ship exists between the occurrence of
submarine canyon deepenings and earth-
quake disturbances. Based on direct
observations, Dill (1964a) states that
earthquakes have little effect on the
failures that cause the removal of
sediment from the head of Scripps
Canyon. The slope failures caused by
earthquakes listed in Table 1 provide
evidence that there is at least a
corrclation between submarine slumping
and near earthquakes of large magnitude.
It seems significant that all the
shocks cited in this table had a magni-
tude greater than 6.5. Taking 6 degrees
as a typical angle representing some
of the cases listed in Table 1, and
assuming the sediment to have undrained
strengths in terms of N between .25 and
Lo, it is seen from Figure 9 that the
slope must have responded with an accel-
eration between 5 and 10 percent of
gravity.

The observations of Emery and
Terry (1956), described in an earlier
section, provide an interesting case of
a relatively steep stable slope in a
seismically active area. Since the
sediment has a plasticity index of about

Slumping



25 percent, the value of N might, from
Figure 2, be ar least 0.22 and the
equilibrium slope for undrained failure
without earthquake loading is 13 degrees.
This fits well within the range of the
observed slope angles and is close to
the average of 12 degrees. However,
steeper slopes were observed, and the
index data quoted above refer to a slope
of approximately 15 degrees. A slope

cf 15 degrees requires an N value of
0.25 for stability. This is within

the scatter to be expected from correla-
tion with Figure 2, but it leaves no
margin for incorporating the influence
of earthquake loading. To obviate this
difficulty, it is worthwhile noting

that although bedrock acceleratlions
during an earthquake may be high, the
response of the overlying sediment
depends upon its modulus of rigidity,
and if this is very low, the shear
stresses induced in the sediment may be
low, although the displacements will be
large.® In a normally consolidated.
sediment the modulus of rigidity will
vary with depth, and it could Le that
for typical ground motions associated
with near earthquakes of magnitude less
than 6, the dynamic stresses in the
sediment are not very significant. If
data.on the variation of rigidity with
depth in a slope could be obtained, the
solution given by Ambraseys (1959) to
the problem of the response to an
arbitrary ground motion of an elastic
overburden with varying rigidity could
be used to investigate this point.

A collapse slump is defined as one
that fails initially under drained con-
ditions, but the deformations associated
with failure bring about a large in-
crease in pore pressures. These pore
pressures reduce the shearing resistance,
and the soil mass accelerates. This

#The dynamic shear stress in the sedi-
ment is given by:

=X . . u
6T g Vs u (20)

where Ta denotes the dynamic shear stress

Vs denotes the shear wave velocity
0 denotes the particle velocity

and denotes the mass density.

|«

If the computed response of the sediment
to ‘earthquake loading shows low strain
rates and hence low particle velocities,
and if Vs 1is small due to the low
rigidity, the dynamic stress, 143, will
also be small.
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type of mechanism has only received
detailed attention in the study of one
landslide which occurred in a thin
layer of quick clay (Hutchinson, 1961).
It is probably a feature peculiar to
structurally metastable sediments. The
analyslis of this slide, using pore
pressures based upon ground water level
observations, indicated that failure
occurred with a drained angle of shearing
resistance of only 7 ¥ 1.5 degrees.
This value was substantiated by both
in-place and laboratory shear box tests.
Conventional isotropically consolidated
undrained triaxial tests gave values of
¢' of 25 degrees, and Bjerrum (1961) has
suggested that the lower initial yield
is destroyed by sample disturbance and
reconsolidation. Further information
on this phenomenon is given by Bjerrum
and Landva (1966). Hutchinson (1961)
also observed pore pressures in excess
of hydrostatic pressure within the clay
layer and remarked that the sliding
caused breakdown of the clay structure,
and hence part of the overburden load
was transferred to the pore water.
Therefore, although the initial failure
occurred under drained conditions,
further movement occurred under un-
drained conditions. This can only
happen when the undrained resistance

is less than the drained resistance at
failure, as it was in the case discussed
here.

Although these quick clays do not
commonly exist in a submarine environ-
ment because they have been made meta-
stable by the leaching of salt water,
some submarine sediments may achieve
metastability and high sensitivity in
other ways and could be subject to
collapse slumping. Therefore the
possibility of initial slumping under
drained conditions with acceleration
under undrazined conditions on slopes
of 5 to 10 degrees cannot be excluded

without further study.

Moore (1961) concluded ‘that in
general most sediments are theoreti-
cally stable to great thicknesses on
very steep slopes. This conclusion
was based upon the use of strength
parameters typical for drained com-
pression of stable sediments, and the
analysis presented here, for this case,
is in agreement. Undrained failure
of stable, fully consolidated sediments
can lead to slumping on slopes of more
gentle inclination, particularly if
the sediment responds to earthquake
loading with & significant acceleration.
Therefore considerable slumping may
occur on the normal open shelf where



collapse slumping may also be impor-
tant.. In agreement with Moore, the
deep sea is probably almost free of
slumping. This is because the gradi-
ents of most physical features there
are very low; sediments are likely to
be fully consolidated and possibly
stronger due to diagenetic bonding,
and the slopes are situated out of
range of several of the agencies which
can produce undrained failure.
ing is undoubtedly frequent in areas
of rapid deposition, and here may
occur on very gentle gradients.

Slump~-

INITIATION OF TURBIDITY CURRENTS

When a slump takes place in a
stable cohesive sediment of low sensi-
tivity, czperience of subaerial land-
slides suggests that shearing will
take place on a plane or set of planes
while the mass of the sediment remains
relatively intact. The mass of sedi-

_ment should come to rest at a new e¢qui-
librium position consistent with the
strength obtaining after failure, and
although it may exhibit features
associated with a g¢oherent slump,
as intraformaticonal folding, it is
difficult to imagine that the stresses
acting on the slump mass during motion
can disrupt its structure sufficiently
.to allow Jdispersion of the sediment
and mixing with water. However, cohe-
sive sediments of high sensitivity and
cohesionless soils, particularly
metastable ones, can achieve a greater
mobility, and in the limit a slump may
lbe transformed into a turbidity current.

There is considerable evidence

-that some sediments in the deep sea
have had their origin in shallow water.
In a study of deep-sea sands, Kuenen
(1964) stated that practically all
deep-sea sands were emplaced by
turbidity currents. Heezen and Hollis~
ter (1964) suggested that although
deep-sea currents are capable of trans-
porting coarse material, they cannot
account for the graded bedding which
is a common feature of deep-sea sands.
However, in the light of Dill's obser-
vations (1964%a, 1966) of bottom current
pulsations and creep and slump effects,
these conclusions are possibly prema-
ture, and the presence of deep-sea sands
cannot be taken as wholly unambiguous
evidence for the existence of turbidity

.currents. Other evidence for turbidity
current deposition includes the dis-
placement of shallow-water benthonic
fauna to deep water, and the relief

such

JI

‘reservoir.
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and distribution of abyssal plains,
channels, and fans (Menard, 1964).
The timing of submarine cable breaks,
after slumping was caused by an earth-
quake, demonstrates the mobility of
the sediment. The first confirmation
that a slump can transform into a
turbidity current was given by .lleezen,
Ericson, and Ewing (1954), who dis-
covered a graded bed of silt south of
the Grand Banks. This bed had its
origin in a turbidity current caused
by the slump which occurred during the
earthquake of 1929. Heezen and Drake
(1964) have suggested that there was
deep-seated coherent slumping as well
in this case. Slumping has also been
cited by Holtedahl (1965) as the
initiating agency to account for
abundant recent turbidites
the Hardangerfjord, Norway.
Not all turbidity currents have
their origin in slumps. In the case
of the Congo Submarine Canyons (Heezen
and others, 1964) cable breaks occurred
most frequently at the times of greatest
bed load discharge, and since a delta
is not being formed at the river mouth,
it is possihle that large sediment dis-
charges continue directly as turbidity flows.
Only low density turbidity currents
have been directly observed. These
often occur due to the discharge of
sediment by a river into a
In the case of
Mead turbidity current, it
that the excess density is
1l percent and the velocity
2 ft per sec on a gradient of approxi-
mately 2000:1 (Gould, 1951). Kuenen
(1950) postulated the existence of
turbidity currents with densities com-
parable to the bulk density of typical
sediments and was able to produce them
in the laboratory., The density of
turbidity currents in the sea remains
debatable. "The high-density current
explains sea-floor phenomena more
easily, but is yet to be observed. If
the low-density current begins as a
slump, it is not clear how the extreme
dispersion of the sediment occurs. The
twisting and abrasion of cables broken
by the Suva turbidity current described
by Houtz and Wellman (1962) favors the
high density interpretation. Alterna-
tive mechanisms for a sequence of cable
breaks, such as a wave of liquefaction
or progressive slumping, appear less
satisfactory. .
Data on times of breakage of sub-
marine cables provide evidence that
turbidity currents can maintain veloci-
ties of about 15 to 30 ft per sec on

the
found in

lake or
the Lake
is known
only about
less than



the very gentle gradients of the abyssal
plains. Although it is generally
accepted that higher velocities are
developed on the steeper continental
slope, few conclusive data are available
and the exact values are still debated.
Menard (1964) suggests that the Grand
Banks turbidity current reached a
velocity of 63 ft per sec before it
began to decelerate, and even higher
values have been quoted.

While there has been considerable
study of the mechanics of turbidity
flow (see Johnson, 1962, 1964, for a
review) little attention has been paid
to the problem of how a current is
initiated. Moreover, small-scale ex-
periments carried out on a naturally
sloping sea floor 40 ft below sea level
were not successful in producing a
high-density, high-velocity current
(Buffington, 1961). 1In the following,
the acceleration of a slump after
failure is considered in an attempt to
delineate some of the conditions neces-
sary for a slump to attain sufficient
velocity that it may transform into a
turbidity current. These considerations
may explain the failure of the experi-
ments mentioned previcusly.

The problem is best treated in
terms of effective stress. It is
assumed that some unspecified mechanism
has brought the cohesionless sediment
on an infinite slope into a state of
limiting equilibrium by inducing an
undrained failure, and that the excess
pore pressure in the sediment at this
instant is given by

(21)

where u denotes the excess pore
pressure

n is some number
is measured perpendicular to
the slope, increasing downwards
from the surface of the slope.
If the slice shown in Figure 10 is to
be in a state of limiting equilibrium,
it is readily shown that

n cos a tan ¢' - sin a
y' tan ¢°' (22)
From equation (22) the values of —r

have been computed for a range of slope
angles and for values of ¢' of 10, 20,..
and 30 degrees. These values are
plotted in Figure 11. If for a given
value of a« and ¢' the magnitude of

n

Y'
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obtaining in the slope is less than
that shown in Figure 11, motion will
not occur, If, however, it is greater,
though not necessarily liquefied, the
sediment will not be in equilibrium

and it will accelerate due to the force
unbalance acting upon the mass. (The
viscous stress acting on the upper
surface may be neglected.,) Assuming
that the mass is initially at rest,

the equation of motion gives

Vr = % [y'sin -(y'cosa-n)tan ¢'Jt (23)

where Vr denotes velocity for this
rigid block model

t denotes time
and g ~denotes the acceleration

due to gravity.

It is seen that for this model the velocity
increases linearly with time, and de-
pends upon the slope angle, the excess
pore pressure gradient, and the density
and strength of the sediment. A dia-
grammatic velocity profile is shown in
Figure 10.

A more realistic model may be
developed by incorporating a viscous
resistance due to the strain rate in
the sediment. 'This would give rise to
a velocity profile of the type shown
for this mode of flow in Figure 10.
Since the slope is infinite there is
no variation of any stress or strain-
rate in the x direction. The equation
of motion for an infinitesimal element
accelerating in the x direction becomes

S ST Y avv
yY'sin «a 5z~ g 3% (24)
where V, denctes the velocity in the

x direction.
There is no acceleration in the =z di-
rection. Incorporating a viscous
resistance into the failure criterion
for the sediment gives
av

v
9z

(25)
where n denotes the viscosity of the

sediment.
The viscous term is negative here
because, owing to the choice of axes,
the velocity gradient is negative.
Substituting equation (25) into (24)
gives

Twz = (y'cos a*z - nz) tan ¢' - n

32vv av,,

- T a—=-0» (26)
322 9t
where a = %2 (27)



{Y‘sinu - (y'cosa - é)tan@'}
n
(28)

Fquation (2¢) is to be solved subject to
the boundary conditions

Tt =0, V, =04
v, (29)
t >0 (z =0, =— = 03
z = h, V. = 0,
v

where h  is the depth of the slump.
This problem has bLeen considered by
Carslaw and Jaeger (1959) in the con-
text of heat conduction and the solu-
tion is:

R \ , ®
Lh Z 2 2
Vv = .T. 'l - — - _._3.

h? n
n=o

(-1)"
(2n + 1)3

-a(2n_+ 1)2n2t1
(?2n + 1) LEZUN Wh?

cOs -
7h

\ (30)

Equation (30) may be expressed in terms
of a dimensionless depth factor

=413

3

time factor

at

e

h ,
and velocity factor

2V
v

bh?

and plotted graphically as in Figure

12 to reveal the development of the
velocity profile with increasing time.
The maximum velocity occurs at the
surface of the flow, and plotting the
velocity factor against time factor for
z = 0, it is seen from Figure 13 that
for a small time a linear relationship

exists. More particularly

vz ar (31)

bh2 h?

Theréfore, for small time

Vv = % [vy' sina - (y' cosa - n)tan ¢'Jt
‘ (32)

‘merged density.
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and comparing equation (32) with equa-
tion (23) one finds '

(33)

In the early stages of motion the maxi-
mum velocity developed in the friction-
al-viscous flow will be the same as
that 'in the purely frictional flow.

The average velocity will be slightly
less., For larger times the viscosity
will now be more significant. Viscosity
data for sediments of high concentra-
tion are scarce. However, on the basis
of experiments reported by Yano and
Daido (1965) values of between 0.4 and
0.5 lb (force) sec per sq ft may be
used in calculations for the concentra-
tion of sediments likely to exist in

an accelerating slump.

The process of transformation into
a turbidity current involves the onset
of turbulence and the likelihood of
some mixing with overlying water due to
instability and wave formation at the
interface. This is a difficult problem
and is by no means fully resolved at
present. Among the factors that would
deter a slump from transforming into a
turbidity current are rapid decrease
of slope inclination and the dissipation
of pore pressure, It is of interest,
then, to adopt a relationship that has
been applied to the steady state flow
of a turbidity current in order to find
a velocity at which it may be assumed
that transformation is complete, and
then, for an assumed slump, compute the
time required to achieve this velocity.
The degree of dissipation at this time
can also be estimated.

A slump 30 ft thick is assumed to
have occurred on a slope of 5 degrees
and following Kuenen (1952) it ‘is
assumed that the Chezy eqguation is valid
when the turbidity current is created.
It is also assumed that the bulk density
of the sediment is three times the sub-
From the Chezy equation
a velocity of 58.5 ft per sec is ob-
tained. If it be further assumed that
the angle of shearing resistance is 20
degrees and '

n

Y
is 0.8, this velocity is attained in
only 340 seconds. It is evident that
the degree of dissipation of pore
pressure for a slump of this size after
340 seconds is negligible for all but
the coarsest sediment. It seems prob-
able that in the experiments carried



out by Buffington (1961) the amount of
sediment was so small that, aggravated
by spreading, the drainage path was
sufficienty small to allow almost
instantaneous dissipation of the excess
pore pressure.

For a slump to turn Iinto a turbidity
current, the analysis presented here
shows that it is necessary that at
failure the strength be reduced suffi-
ciently to permit the acceleration of
the mass, and that deeper slumps will
transform more readily because, other
things being equal, the dissipation of
pore pressure will be less.

CONCLUDING REMARKS

“uch of this study is necessarily
speculative because of the paucity of
reliable strength data for submarine
sediments. It is evident that a more
profound understanding of submarine
slumping requires this information,
as well as moure detailed studies of
topography, occurrence of slumping,
and rate of accumulation of material
in varying sedimentary environments.
The development of underconsclidation
in deltas and submarine canyon heads
deserves special attention.

The transformation of a moving
slump into a turbidity current is a
complicated problem involving both
soil and fluid mechanics. Conditions
that must be satisfied for the onset
of turbulence and the development of
the dispersive forces that arise and
maintain the sediment in suspension
are not well understood. The mixing
with overlying water is an important
factor in the development of a turbidity
current, and controls its density.
This process must be clarified before
the mechanics of turbidity currents of
high density can be founded on a firm
physical base.

‘Bishop,
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Characteristics of Marine Seismic Sources

by Douglas M. Johnson
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Appendix VIII-1
Characteristics of Marine Seismic Sources

Introduction

"High resolution continuous seismic reflection” (or
continuous seismic sounding) is the widest-used and most
economical method for studying the first hundred metres
of so0il beneath the sea floor.

The method enables the geometry, structure and con-
figuration of the geolocial strata to be determined.
However, in the prevailing state of techniques, seismics
alone does not make it possible to make any affirmation:

~ as to the nature of the soils,
- and yet less, as to their physical and mechanical
properties. '

While certain interpretations sometimes justify a
presumption as to the state of consolidation of the soils
(owing to the degree of penetration, for instance of
signals with a given frequency and energy), these
assumptions must necessarily be verified by core samples
or in situ geotechnical measurements.

Preliminary recording of seismic profiles on a marine.
site makes it possible:

~ to fix the locations of the geological and geo-
technical soundings (drilling/core drillirngs and in
situ measurements) as a function of the variations
in the configuration of the subsoil,

~ to reduce the number of these soundings,

~ to extrapolate where necessary the results of core
drillings and in situ measurements.

All seismic techniques currently applied for the
reconnaissance of marine soils use the continuous reflection
method. The refraction method is applied only when seismic
reflection proves to be inoperative or the results
obtained do not yield the expected accuracy.

Several types of devices are used in "high resolution
seismics." The main of them are:

~ sediment sounders (or echo sounders)
~ boomers
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- sparkers
- side scan sonar

These devices are characterized by their transmission
frequency and consequently the penetration of the signal
and its resolving power (or definition):

- the penetration is inversely proportional to the
transmission frequency,

- the resolving power (and relective quality) decreases
with the penetration and increases with frequency.

Since "Boomer", Echo Sounders, and Side Scan Sonar was
used in the Shannon-Wilson reports, a discussion of their
characteristics has been included in this Appendix.
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BOOMERS (AND THE UNIBOOM)
The boomer or thumper is an electromechanical source
invented by EEG.
Principle and characteristics of the boomer

Principlé of the boomer

The boomer consists of:

- an induction coil against which an aluminium plate
is applied by a system of springs,

- a bank of capacitors (connected to a sparking
circuit) producing electrical discharges through
the coil at regular intervals.

With each discharge, the eddy currents induced in the
conductive plate cause it to move violently away £from the
coil. The initial movement of the plate triggers the
acoustic pulse.

Characteristics of the boomer and Uniboom

The acoustic signature of a 1,000 J boomer has a
signal duration of about 5 ms. :

The spectrum for this boomer ranges from 200 to
2,000 Hz.

From the standpoint of enery distribution, the figure
reveals:

- a very high amplitude of the initial pulse peak (a),
- a peak of negative amplitude (b) extending the signal.

This secondary peak is caused by the cavitation which
arises behind the plate in the depressurized zone.

In the Uniboom system, the secondary pulse is
eliminated by providing an elastic diaphragm on the inner
face of the plate from the depressurized side. This
diaphragm then absorbs part of the enrgy and thus limits
the cavitation.

The duration of the Uniboom signal is limited to about
0.2 ms.
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The frequency spectrum ranges from 500 to 10,000 Hz

on the average (the frequency decreases slightly as the
energy output increases).

The resolving power:

- of the boomer proper is not less than 2 m, owing to
the considerable length of the signal,

- with the Uniboom, it can theoretically get down to
30-40 cm (comparable to the best sediment sounders).



136

Principle and equipment of the echo sounder

Principle of the echo sounder

The echo sounder puts out a brief ultrasonic pulse
which is reflected from the sea bottom. The return echo
is amplified and then continuously recorded.

Let V be the speed of sound in water and t the time
interval between the emitted and return echo, the depth
H is given by: :

vt

H=2—‘

Equipment of the echo sounder

Transmission and reception are ensured by a common
electro-acoustic transformer or transducer which converts
the mechanical vibrations into electrical vibrations of
the same frequency.

Coupled to an electric pulse generator, the transducer
converts the electrical energy into acoustic energy on
transmission, and conversely the reflected acoustic signal
is converted into an electrical signal.

The most widely used transducers are based on the
piezoelectric properties of certain ceramics (barium
titanate, zirconate). They vibrate at a certain resonance
frequency. These vibrations, transmitted to the water,
act as sound pulses.

The optimum frequency range, which depends on the
depths of water and nature of the bottom, extends from
about 15 to 200 kHz, depending on the type of device. The
higher the frequency, the more efficient the absorption.

At the recording end, the propagation times measured
are converted into depth, depending on the speed of sound
in water (from 1,460 to 1,560 m/s in sea water). For a
given speed, the rate of the stylus, which inscribes along
a strip of paper, determines the scale of the soundings,
namely the number of metres of water represented on the
width of the recording paper. '
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Characteristics of transducers

Transducers are characterized by their nominal
frequency, directivity and level of energy.

The nominal frequency of a transducer designates its
transmission frequency under permanent excitation (i.e.,
resonance).

For precision echo sounders, used for bathymetry, the
sound beam is relatively narrow. The following are typical
orders of magnitude:

-~ for common echo sounders:
10-20° at 50-30 kHz

- for large diameter echo sounders with very narrow
beams, used at great water depths:

3-6° at 30-15 kHz
The transmission level of a transducer is a measure
of the energy transmitted along the axis of the transducer,
measured one metre away. A high transmission fér the
same electric power is the sign of better efficiency.

Resolving power of an echo sounder

Resolving power of an echo sounder essentially depends
on the duration of the pulse, the angle of the ultrasonic
beam, the depth of the water and topography of the bottom.

A resolving power is limited by the fact that it is
impossible to transmit an extremely brief signal.

If At is the shortest discernible time interval between
two echoes, then the depth resolutions is:

AH = E.At

where: V is the speed of sound in water.
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Principle of the side-scan sonar. Formation of the echoes

The side-scan sonar transducer acts both as transmitter
and receiver of the ultrasonic signals.

The system generally consists of:

- a round-nosed cylindrical body towed from the vessel
(known as the "fish"), containing one or two (1)
transducers (together with the associated electronic
circuits),

- a towing cable ensuring the elctrical and mechanical
links to the towing vessel,

- a one or two rack recorder using either electro-
sensitive paper or a magnetic tape.

The side-scan sonar transducer:
- transmits short sound pulses to the water, per-
pendicular to the direction of travel,
- receives the echoes recorded aboard the vessel
(following conversion into electric pulses).
The frequencies used vary from a few tens to about
100 kHz, depending on the particular unit.

Formation of the images

The sound pulses transmitted at regular time intervals
(the repetition rate essentially depends on the lateral
range selected) and the echoes resulting from the
irregularities on the sea bottom are recorded as a function
of time (two-way trip): clearly, the nearest echoes
arrive first, followed by echoes from more distant zones
at ever increasing intervals.

Each group of echoes resulting from a transmission is
displayed on the recorder in the form of a trace inscribed
cross-wise by the stylus on the recording paper which moves

longitudinally.

As the vessel advances and the pulses occur one after
the other, an image is formed on the recording paper by

(1) The sonar is generally bilateral.



139

juxtapostion of the traces (somewhat similar to that
obtained on a television screen).

Geometry of the ultrasonic beam

The fineness and precision of the recording are a
function of the narrowness of the ultrasonic beam, and of
the frequency and duration of the pulse transmitted.

The shape of the transducer is selected so as to
transmit a fan-shaped beam:

- with an angle of a few degrees in the horizontal
plane (azimuth),

- with an angle of about 10 to few tens of degrees
in the vertical plane (elevation).

The ultrasonic beam can be broken down into the
following: '

- a primary lobe with an angle defined conventionally
as the sector in which the sound intensity is only
3 dB beneath that of the axial (maximum) intensity,
- a number of secondary lobes.

Even though only the primary lobe is actually used in
practice, the secondary lobes present a certain interest.
In particular, the sub-vertical lobe:

- gives a section of the bottom of the sea along the
path of the vessel,

- enables any echo from an object situated in the water
near the vertical of the vessel to be identified
(for instance a shoal of fish).

Formation of the echoes. Angle of incidence

The features of the bottom brought to light are:

- either of topographical nature (variation of the
angle of incidence),

- or related to the physical characteristics of the
soil (variations in the coefficient of reflection
or backscattering).

The way in which topographic echoes are formed is
shown in Fig. . All the folds in the bottom cause
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the angle of incidence of the acoustic rays to vary and
hence also the amount of reflected energy.

The useful part of the recording is that corresponding
to angles of incidence of less than 30°, where the
coefficient of reflection varies sharply with the angle
of incidence. The ideal conditions therefore prevail for
detecting variations in the angle of incidence and hence
variations in the topography.

A change in the nature of the bottom modifies the
intensity of the signal as much or even more than a change
in the gradient (especially if the angle of incidence
is between 20 and 60°). The reflection coefficient varies
considerably when changing from mud to pebbles or rock,
while sand lies somewhere in between.

Characteristics of the side-~scan sonar

The side-scan sonar is essentially characterized by
its longitudinal and transverse resolving powers.

Lateral range

The maximum range of a side-scan sonar depends on
many factors, the leading ones being:

- the characteristics of the instrument:

- the pulse duration,

- the transmission power,

- the signal/noise 5at10,

- the frequency (rF° = 1,300 is an empirical formula
expressing the range in kilometres for an optimum
frequency in kilocycles),

- the physico-chemical properties of the medium through
which the sound waves are propagated,

- the implementation parameters

~ the height of the "fish" above the bottom,

~ the inclination of the axis of the beam from the
horizontal.
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Distortion of side-scan sonar images

There are various causes for the distortion of side-
scan images, including the following:

the obliqueness of the beams

the slope of the bottom,

the anisotropy of the medium through which the
rays propagate,

the navigating conditions

the scales on the recordings.






